

ESSENCE STATEMENT

General Science investigates biological, physical and chemical phenomena. The science equips the learner with foundational skills and principles necessary for application in real life and industry. This learning area also deals with society's need to understand how the physical environment works in order to benefit from it and responsibly care for it. The learning area utilises scientific and technological knowledge which builds on the foundational concepts acquired from Integrated Science at Junior School. Teaching General Science at Senior School continues with the process of developing scientific knowledge and understanding of ideas developed in Integrated Science at Junior School.

The purpose of General Science is to develop competencies in the learner to solve societal and technological problems while taking care of the environment. The learning area seeks to equip learners with functional investigating skills relating to life science. Some of the skills relevant for the study of General Science include; classifying, communicating, measuring, designing an investigation, drawing and evaluating conclusions. The learner will need to formulate models, observe, hypothesise, identify and control variables, interpret data and make inferences based on scientific evidence. This aims at developing problem-solving and reflective skills. General Science promotes construction and application of scientific and technological knowledge; an understanding of the nature of science to make it applicable in real life situations. This will increase understanding of basic life principles and concepts, prepare student for post Senior School learning especially for the learner who will not require pure sciences.

These abilities can support students in navigating day to day life issues and are crucial for success in any field of study, employment or world of work. Consequently, studying General Science provides a platform for the learner who may develop interest in specialist learning such as sports science, applied science courses, talent based areas and vocational career paths. Knowledge, skills and attitude in General Science enables the learner to develop a sense of citizenship as well as environmental management and socio-economic development skills. General Science plays an increasingly important role in the lives of all learners owing to the influence on scientific and technological development, which are necessary for the country's economic growth and the social wellbeing of its people.

GENERAL LEARNING OUTCOMES

By the end of Senior Secondary School, the learner should be able to:

- a) Relate General Science to technology and society to enhance the learners' appreciation of the environment.
- b) Select and use appropriate instruments to carry out basic science process skills to discover and explain the order of the environment.
- c) Apply basic research and scientific skills to manipulate the environment and solve human problems.
- d) Develop capacity for critical thinking through basic scientific skills and research in addressing pertinent & contemporary issues affecting the society.
- e) Apply scientific skills for enhancement of innovations and entrepreneurial skills for development.
- f) Use relevant skills and values to promote local and global citizenship for harmonious coexistence and appreciation of biodiversity.
- g) Acquire adequate knowledge, skills and attitudes to enhance exploitation of individual talents for leisure, self -fulfilment, career growth and for further education and training.
- h) Apply acquired knowledge, skills and attitudes for effective communication and utilisation of information in scientific advancement.

SUMMARY OF STRANDS AND SUB STRANDS

1.0 INTRODUCTION TO GENERAL SCIENCE

1.1 Introduction to General Science

2.0 LIVING THINGS AND ENVIRONMENT

2.1 Properties of Waves

2.1 The Cell

2.2 Nutrition in Animals

2.3 Transport in plants

2.4 Respiration

2.5 Plant growth and development

2.6 Microorganisms

3.0 MATTER AND CHEMICAL REACTIONS

3.1 The periodic table

3.2 Chemical Families

3.3 Chemical bonding

3.4 Acids, Bases and Salts

3.5 Rates of Reactions

4.0 GENERAL PHYSICS

4.1 Turning effect of force

4.2 Linear motion with constant acceleration

4.3 Waves

4.4 Magnetism and electromagnetic induction

STRAND 1.0 - INTRODUCTION TO GENERAL SCIENCE

1.0 Introduction to General Science

a) Meaning of General Science:

General Science is a broad learning area that encompasses the fundamental principles and concepts of the natural world. It provides a foundation for understanding various scientific disciplines by exploring the basic laws and processes governing living organisms, matter, energy, and their interactions. It aims to develop scientific literacy, enabling individuals to make informed decisions about scientific and technological issues in their lives and society.

b) Branches of General Science:

General Science is broadly divided into three main branches:

Chemistry *Teacher.co.ke* Biology Physics

- ✓ **Biology:** The study of life and living organisms, including their structure, function, growth, origin, evolution, and distribution. It encompasses diverse sub-disciplines such as botany (study of plants), zoology (study of animals), microbiology (study of microorganisms), genetics (study of heredity), ecology (study of the interactions between organisms and their environment), and human biology (study of the human body).
- ✓ **Chemistry:** The study of matter and its properties, as well as how matter changes and interacts. It explores the composition, structure, properties, and reactions of atoms, molecules, and compounds. Key areas include organic chemistry (study of carbon-containing compounds), inorganic chemistry (study of non-carbon-containing compounds), physical chemistry (study of the physical principles underlying chemical phenomena), analytical chemistry (identification and quantification of substances), and biochemistry (chemistry of living organisms).
- ✓ **Physics:** The study of matter, energy, motion, and forces, and how they relate to each other. It seeks to understand the fundamental laws governing the universe, from the smallest subatomic particles to the vastness of space. Major areas include mechanics (motion and forces), thermodynamics (heat and energy transfer), optics (light and vision), electromagnetism (electricity and magnetism), acoustics (sound), and nuclear physics (structure of the atom's nucleus).

c) Importance of General Science:

General Science plays a crucial role in various aspects of our lives, the environment, and technology:

Life:

- ✓ **Health and Well-being:** Understanding biological processes helps us maintain good health, prevent diseases, and appreciate the functioning of our bodies. Knowledge of chemistry is essential for understanding nutrition, medication, and the chemical processes within our bodies. Physics contributes to medical imaging technologies like X-rays and MRIs.
- ✓ **Agriculture and Food Production:** Biology provides insights into plant and animal growth, breeding, and disease control, leading to improved agricultural practices and food security. Chemistry is vital for understanding soil composition, fertilizers, and pesticides.
- ✓ **Understanding Living Organisms:** General Science helps us appreciate the diversity of life, the interconnectedness of ecosystems, and the importance of conservation.

Environment:

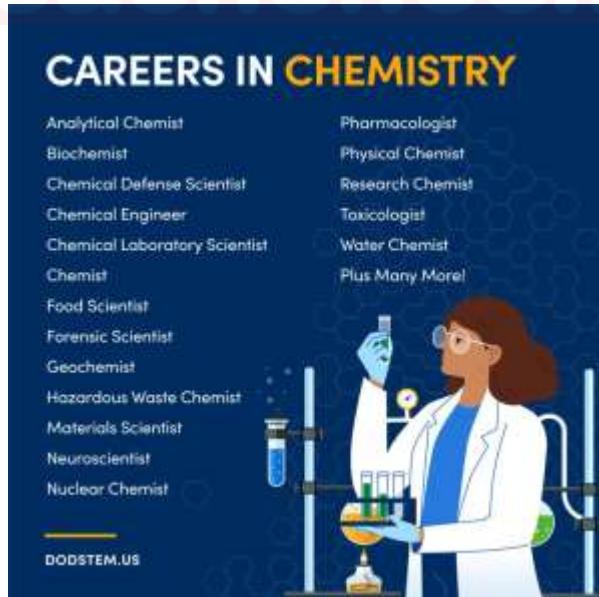
- ✓ **Understanding Ecosystems:** Biological principles explain how living organisms interact with each other and their environment, helping us understand the delicate balance of ecosystems.
- ✓ **Addressing Environmental Issues:** Chemistry helps us understand pollution, its sources, and its effects. Physics contributes to the development of renewable energy sources and technologies for environmental monitoring.
- ✓ **Conservation and Sustainability:** Scientific knowledge is crucial for developing strategies to conserve natural resources and promote sustainable practices.

Technology:

- ✓ **Innovation and Development:** The principles of physics and chemistry are fundamental to the development of new materials, technologies, and devices that improve our lives (e.g., electronics, transportation, communication).
- ✓ **Engineering and Manufacturing:** Scientific understanding is essential for designing, building, and manufacturing various products and infrastructure.
- ✓ **Space Exploration:** Physics is the foundation for understanding celestial mechanics, propulsion systems, and the development of spacecraft.

d) Career Opportunities Related to General Science:

A strong foundation in General Science opens doors to a wide range of exciting and impactful career paths, including:


✓ **Biology-related:**

- Agricultural technician
- Quality control technician
- Health educator
- Science teacher
- Physician liaison
- Biologist
- Dentist

Doctor, Nurse, Pharmacist, Biomedical Engineer, Microbiologist, Biotechnologist, Zoologist, Botanist, Ecologist, Agricultural Scientist, Food Scientist, Genetic Counselor, Forensic Biologist, Science Teacher/Lecturer.

✓ **Chemistry-related:**

Chemist (various specializations like analytical, organic, inorganic, physical), Chemical Engineer, Biochemist, Materials Scientist, Toxicologist, Environmental Chemist, Pharmacist, Food Chemist, Quality Control Analyst, Science Teacher/Lecturer.

✓ **Physics-related:**

Download this and other FREE revision materials from <https://teacher.co.ke/notes>

Physicist (various specializations like astrophysics, nuclear physics, condensed matter physics), Engineer (electrical, mechanical, civil, aerospace), Meteorologist, Geophysicist, Astronomer, Data Scientist, Science Teacher/Lecturer.

✓ **Interdisciplinary Fields:** Environmental Scientist, Forensic Scientist, Science Journalist, Science Policy Advisor, Patent Attorney (with a science background), Research Scientist in various fields.

e) The Principle of Inference in Science Education:

Inference is the process of drawing logical conclusions or making interpretations based on evidence and reasoning. It is a fundamental skill in science education as it allows learners to go beyond simply observing facts to understanding the underlying causes and relationships.

Methods of Collecting Evidence for Drawing Conclusions:

- ✓ **Observation:** Carefully watching and recording phenomena using the senses or scientific instruments. For example, observing the growth of plants under different light conditions.
- ✓ **Experimentation:** Designing and conducting controlled investigations to test hypotheses and gather quantitative and qualitative data. For example, measuring the rate of a chemical reaction at different temperatures.
- ✓ **Surveys and Questionnaires:** Collecting data from a sample population to identify trends and patterns. For example, surveying students about their awareness of environmental issues.
- ✓ **Literature Review:** Examining existing scientific research and data to support or refute a hypothesis. For example, reviewing studies on the effectiveness of a particular fertilizer.
- ✓ **Data Analysis:** Organizing, interpreting, and analyzing collected data using statistical methods or qualitative analysis techniques to identify patterns, trends, and relationships. This helps in drawing meaningful conclusions.

Drawing Conclusions (Inferences):

Once evidence is collected and analyzed, scientists use logical reasoning to draw inferences or conclusions. These conclusions should be directly supported by the evidence. For example, if an experiment shows that plants grow taller with more sunlight, the inference is that sunlight is essential for plant growth.

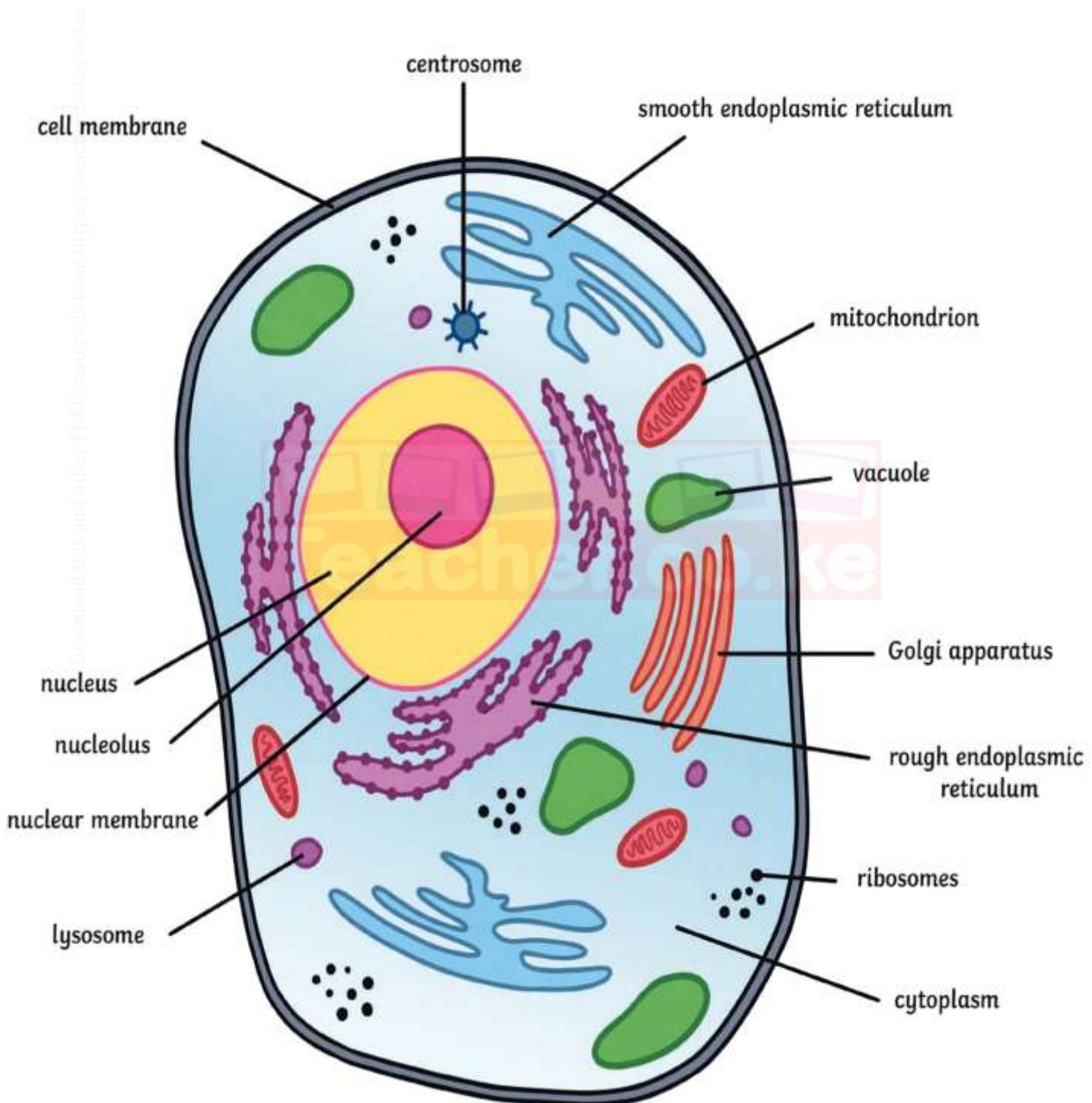
f) Importance of General Science in Day-to-Day Living:

General Science is not just a school subject; it is essential for navigating and understanding the world around us. It helps us:

- **Make informed decisions about our health:** Understanding basic biology helps us make choices about diet, hygiene, and seeking medical help.
- **Understand everyday phenomena:** Science explains why the sky is blue, how a refrigerator works, and why bread rises.
- **Evaluate scientific claims:** Scientific literacy enables us to critically assess information presented in the media and make informed decisions about issues like climate change or vaccinations.
- **Solve practical problems:** Scientific thinking skills, such as observation, experimentation, and logical reasoning, are valuable for solving everyday challenges.
- **Appreciate the natural world:** Understanding scientific principles fosters a sense of wonder and appreciation for the complexity and beauty of the natural environment.
- **Engage with technological advancements:** Basic scientific knowledge helps us understand and utilize new technologies effectively.

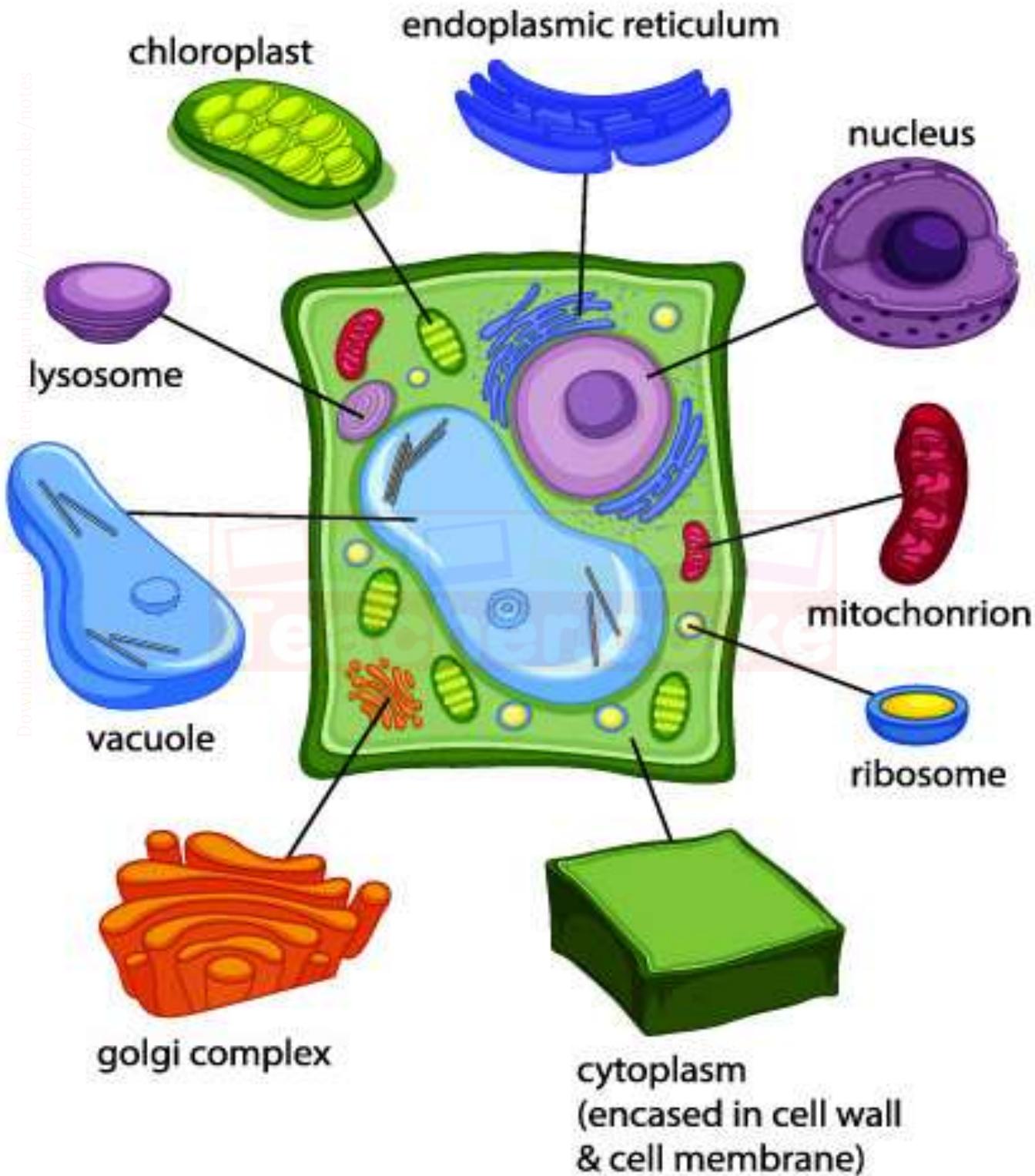
STRAND 2.0: LIVING THINGS AND ENVIRONMENT

2.1 The Cell


The cell is the basic structural and functional unit of all living organisms. All life processes, from obtaining energy to reproduction, occur within cells. Organisms can be unicellular (made up of a single cell) or multicellular (made up of many cells working together).

a) Differences Between Light and Electron Microscopes:

Feature	Light Microscope	Electron Microscope
Principle	Uses visible light passed through lenses to magnify.	Uses a beam of electrons focused by electromagnets to magnify.
Magnification	Up to approximately 1,500 times.	Up to millions of times.
Resolution	Relatively low (can distinguish objects about 200 nm apart).	Very high (can distinguish objects less than 1 nm apart).
Specimen	Can be used to observe both living and non-living specimens (often stained for better visibility).	Requires non-living, dehydrated, and often stained specimens.
Vacuum	Not required.	High vacuum is required for the electron beam to travel.
Cost	Relatively inexpensive and portable.	Very expensive and large.
Image Formation	Light focused by glass lenses creates a colored image.	Electron beam focused by electromagnets creates a black and white image (often artificially colored).
Ease of Use	Relatively easy to operate and maintain.	Requires specialized training and maintenance.


b) Plant and Animal Cell Structures under an Electron Microscope:

Typical Animal Cell Structures

- **Plasma Membrane:** The outer boundary of the cell, a thin, flexible barrier that controls the movement of substances into and out of the cell.
- **Nucleus:** A large, membrane-bound organelle containing the cell's genetic material (DNA) in the form of chromatin. It controls all cell activities.
 - ✓ **Nuclear Envelope:** A double membrane surrounding the nucleus with pores for communication with the cytoplasm.
 - ✓ **Nucleolus:** A dense region within the nucleus involved in ribosome production.
- **Cytoplasm:** The jelly-like substance filling the cell, enclosing the organelles.
 - ✓ **Cytosol:** The fluid portion of the cytoplasm.
 - ✓ **Organelles:** Membrane-bound structures with specific functions.
 - ✓ **Mitochondria:** The "powerhouses" of the cell, responsible for cellular respiration and ATP (energy) production. They have a double membrane with inner folds called cristae.
 - ✓ **Ribosomes:** Small, dense structures responsible for protein synthesis. They can be free in the cytoplasm or attached to the endoplasmic reticulum.
 - ✓ **Endoplasmic Reticulum (ER):** A network of interconnected membranes extending throughout the cytoplasm.
 - **Rough Endoplasmic Reticulum (RER):** Studded with ribosomes, involved in protein synthesis and modification.
 - **Smooth Endoplasmic Reticulum (SER):** Lacks ribosomes, involved in lipid synthesis, detoxification, and calcium storage.
 - ✓ **Golgi Apparatus (Golgi Complex/Body):** A stack of flattened membrane-bound sacs (cisternae) involved in modifying, sorting, and packaging proteins and lipids for secretion or delivery to other organelles.
 - ✓ **Lysosomes:** Small, membrane-bound sacs containing digestive enzymes that break down waste materials and cellular debris.
 - ✓ **Centrioles:** Paired, cylindrical structures involved in cell division (formation of spindle fibers). Typically found in animal cells.
 - ✓ **Vacuoles:** Membrane-bound sacs involved in storage (water, nutrients, waste). Small and numerous in animal cells.

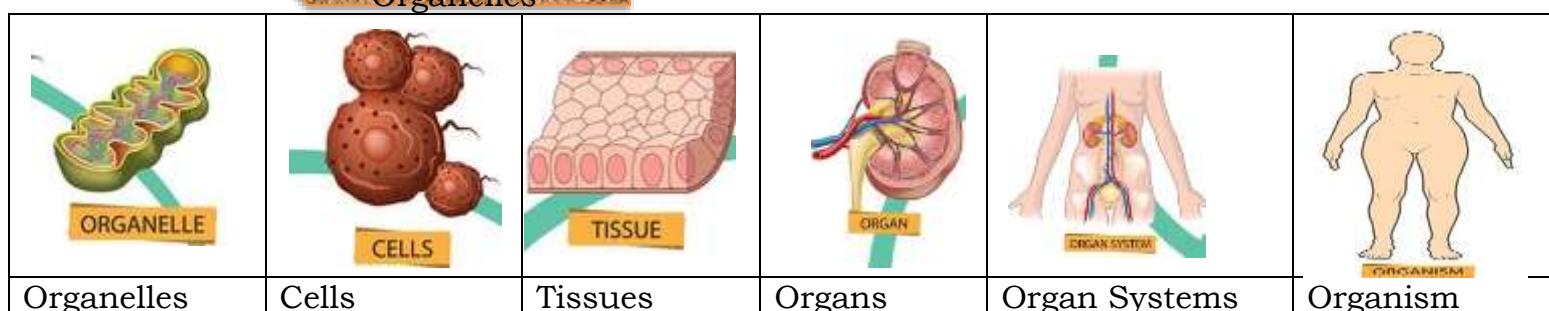
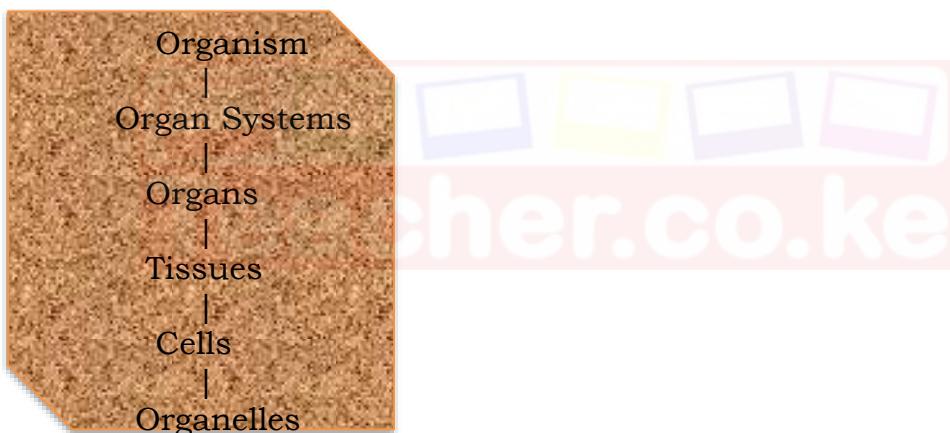
Typical Plant Cell Structures

Plant cells share many organelles with animal cells, but also have some unique structures:

- **Plasma Membrane:** Similar to animal cells, controls the movement of substances.
- **Nucleus:** Similar structure and function to the animal cell nucleus.
- **Cytoplasm:** Similar to animal cells, containing cytosol and organelles.
 - ✓ **Mitochondria:** Similar structure and function to animal cells.
 - ✓ **Ribosomes:** Similar structure and function to animal cells.
 - ✓ **Endoplasmic Reticulum (RER and SER):** Similar structure and function to animal cells.
 - ✓ **Golgi Apparatus:** Similar structure and function to animal cells.
 - ✓ **Lysosomes:** Present in some plant cells, but their role is less prominent than in animal cells.
 - ✓ **Small Vacuoles:** May be present, but less prominent than the central vacuole.
- **Cell Wall:** A rigid outer layer composed mainly of cellulose, providing structural support and protection to the plant cell.
- **Chloroplasts:** Membrane-bound organelles containing chlorophyll, the pigment responsible for capturing light energy for photosynthesis. They have a double membrane and internal stacks of flattened sacs called thylakoids (grana).
- **Large Central Vacuole:** A large, fluid-filled sac that occupies a significant portion of the plant cell volume. It stores water, nutrients, and waste products, and helps maintain turgor pressure.

c) Comparison of Plant and Animal Cell Structures Under Light and Electron Microscopes:

Structure	Light Microscope	Electron Microscope
Plasma Membrane	Visible as the outer boundary of the cell.	Clearly visible as a thin, continuous layer, often showing associated structures.
Nucleus	Visible as a distinct, often spherical structure within the cytoplasm. Nucleolus may be visible as a dark spot.	Nuclear envelope with pores and the detailed structure of chromatin and nucleolus are visible.
Cytoplasm	Appears as the granular material filling the cell. Organelles are generally not clearly distinguishable.	The cytosol and various organelles (mitochondria, ER, Golgi, ribosomes, lysosomes, vacuoles) are clearly identifiable with their internal structures.
Cell Wall	Clearly visible as a thick outer layer in plant cells.	Detailed layers of the cell wall can be observed.
Chloroplasts	Visible as green, oval-shaped structures within the cytoplasm of plant cells.	Internal thylakoid membranes and grana are clearly visible.
Large Central Vacuole	Occupies a large portion of the plant cell, often pushing the cytoplasm and nucleus to the	The tonoplast (vacuolar membrane) and the contents of the vacuole are visible.



	periphery.	
Mitochondria	May be visible as small granules or rod-shaped structures in the cytoplasm.	Double membrane with inner cristae is clearly visible.
Ribosomes	Generally not individually visible due to their small size.	Visible as small, dense particles, either free in the cytoplasm or attached to the ER.
Endoplasmic Reticulum	Not clearly distinguishable as a network.	Rough ER (with ribosomes) and Smooth ER (without ribosomes) are clearly visible as interconnected membrane networks.
Golgi Apparatus	Not clearly distinguishable as distinct stacks.	Flattened cisternae and vesicles are clearly visible.
Lysosomes	Generally not easily visible.	Small, membrane-bound vesicles containing enzymes are visible.
Centrioles	May be visible as small dots near the nucleus in animal cells during cell division.	Cylindrical structures made of microtubules are clearly visible.

d) Functions of the Components of Plant and Animal Cells:

Organelle/Structure	Animal Cell Function(s)	Plant Cell Function(s)
Plasma Membrane	Controls the movement of substances into and out of the cell; cell signaling.	Controls the movement of substances into and out of the cell; cell signaling.
Nucleus	Contains the genetic material (DNA); controls all cell activities through gene expression.	Contains the genetic material (DNA); controls all cell activities through gene expression.
Nuclear Envelope	Separates the nucleus from the cytoplasm; regulates passage of substances.	Separates the nucleus from the cytoplasm; regulates passage of substances.
Nucleolus	Site of ribosome synthesis.	Site of ribosome synthesis.
Cytoplasm	Site of many metabolic reactions; suspends organelles.	Site of many metabolic reactions; suspends organelles.
Cytosol	Fluid portion of the cytoplasm; contains dissolved substances.	Fluid portion of the cytoplasm; contains dissolved substances.
Mitochondria	Site of cellular respiration; ATP (energy) production.	Site of cellular respiration; ATP (energy) production.
Ribosomes	Site of protein synthesis.	Site of protein synthesis.
Rough ER	Protein synthesis and modification; transport of proteins.	Protein synthesis and modification; transport of proteins.
Smooth ER	Lipid synthesis; detoxification; calcium storage.	Lipid synthesis; detoxification; calcium storage.
Golgi Apparatus	Modifies, sorts, and packages proteins and lipids for secretion or delivery to other organelles.	Modifies, sorts, and packages proteins and lipids for secretion or delivery to other organelles.

Lysosomes	Digestion of waste materials, cellular debris, and foreign substances.	Digestion (less prominent role compared to animal cells).
Centrioles	Involved in cell division (formation of spindle fibers).	Generally absent (cell division occurs through other mechanisms).
Vacuoles (small)	Storage of water, ions, nutrients, and waste.	Storage (less prominent compared to the central vacuole).
Cell Wall	Provides structural support and protection to the cell.	Provides structural support and protection to the cell; maintains cell shape.
Chloroplasts	Site of photosynthesis (conversion of light energy into chemical energy).	Site of photosynthesis (conversion of light energy into chemical energy).
Large Central Vacuole	Storage of water, nutrients, and waste; maintains turgor pressure.	Storage of water, nutrients, and waste; maintains turgor pressure.

e) Concept Map of the Levels of Cell Organization:

Explanation:

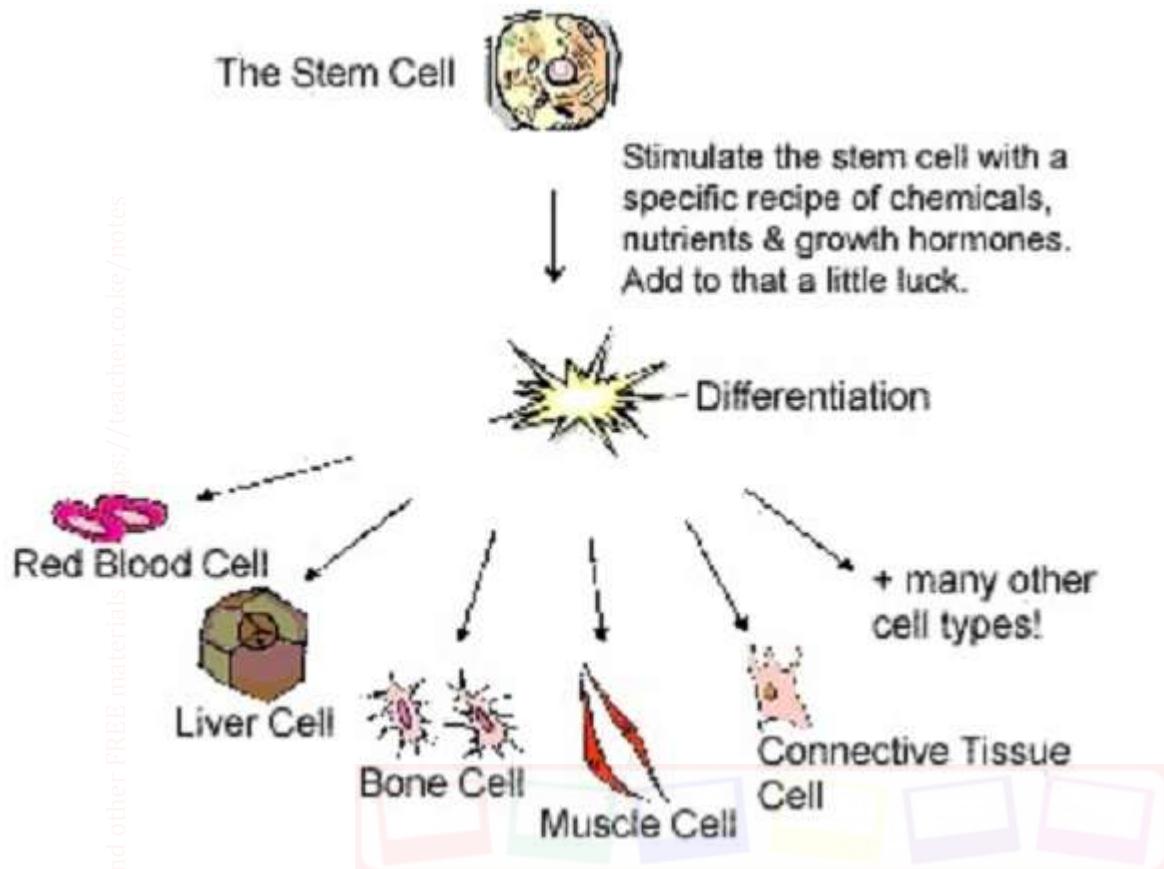
- ✓ **Organelles:** These are specialized sub-cellular structures within a cell that perform specific functions (e.g., nucleus, mitochondria, chloroplasts).
- ✓ **Cells:** The basic structural and functional units of life. Different types of cells are specialized to perform specific tasks.
- ✓ **Tissues:** Groups of similar cells that work together to perform a specific function (e.g., muscle tissue, nervous tissue, epithelial tissue, xylem tissue, phloem tissue).
- ✓ **Organs:** Structures made up of different tissues working together to perform a specific set of functions (e.g., heart, lungs, stomach, brain, leaf, root, stem).
- ✓ **Organ Systems:** Groups of organs that work together to perform major body functions (e.g., digestive system, respiratory system, circulatory system, shoot system, root system).
- ✓ **Organism:** A complete living being made up of one or more organ systems (in multicellular organisms) or just one cell (in unicellular organisms).

Estimation of the Cell Size

The light microscope can be used to estimate the size of a cell. Most cells have diameters smaller than a millimeter. Due to this, cell sizes are always measured in smaller units. These are micrometres and nanometers. These units of measurements are related as shown below.

- ❖ 1 millimeter (mm) = 1000 micrometres (μm).
- ❖ 1 micrometer (μm) = 1000 nanometres (nm).

Procedure in cell size estimation


1. One requires a microscope, transparent ruler marked in millimeters and a prepared slide of cells.
2. With the low power objective lens in place, keep a transparent ruler on the stage of the microscope.
3. Focus so that the millimeters marks on the ruler are seen as thick dark lines.

4. Estimate the diameter of the field of view by counting the one millimeter spaces between the first mark and the last one across the field of view. Count only the spaces between two thick dark lines.
5. Convert the diameter of the field of view from millimeters to micrometres.
6. Remove the ruler and place the prepared slide of cells.
7. Count the number of cells along the diameter of the field of view.
8. Calculate the diameter of one cell using the formula:

$$\text{Cell diameter} = \frac{\text{Diameter of the field of view in micrometers}}{\text{Number of Cells}}$$

Cell Specialization/Cell Differentiation

- This refers to the process by which a cell becomes structurally modified to perform specific functions.
- While cells have a basic outline, they become differentiated to perform specific functions.
- In particular, the root hair cell has extended surface for absorption while the sperm cell has a tail-like extension for swimming towards the ovum.

Tissues

- A tissue is a group of cells of a particular type that are grouped together to perform the same function.

Tissue types in animals

1. **Epithelial tissue**- This is a thin continuous layer of cells for lining and protection of internal and external surfaces.
2. **Skeletal muscle**- This is a bundle or sheets of elongated cells with fibres that can contract. Its contraction and relaxation brings about movement.

3. **Blood tissue**- This is a fluid containing red blood cells, white blood cells and platelets.

The main functions of blood tissue are transportation of nutrients and gases as well as protection of the body against infections

4. **Connective tissue**- This tissue consists of strong fibres that connects other tissues and organs thereby holding them in position.

Tissue types in plants

1. **Epidermal tissue**- This is a single thin layer of cells covering the outer surfaces. It protects inner tissues of plants from mechanical damage and infection.

2. **Palisade tissue**- This is a group of cells rich in chloroplasts containing chlorophyll. It has a site for the absorption of light energy and manufacture of food by photosynthesis.

3. **Parenchyma tissue**- This tissue consists of special thin walled irregularly shaped cells. They form packaging and storage cells.

4. **Conducting tissue/Vascular bundle**- This tissue consists of xylem and phloem. Xylem conducts water and dissolved mineral salts in a plant while phloem conducts food substances in solution.

Organs

- An organ is a group of specialized tissues that are grouped together to perform a common function.

- Organs in animals include:

- **Heart**- Composed of connective, muscle, epithelial and blood tissues.
- **Kidney**- Composed of connective, epithelial and muscle tissues.

- **Brain**- Composed of epithelial, connective tissues.
- **Lungs**- Composed of epithelial, connective tissues.

Organs in plants include:

- **Roots**- composed of epidermal, conducting and parenchyma tissues.
- **Flowers**- This is composed of epidermal, conducting tissues.
- **Stem**- Composed of conducting, parenchyma, and epidermal tissues and palisade tissues in some cases.
- **Leaves**- Composed of palisade, conducting and epidermal tissues.

Organ system

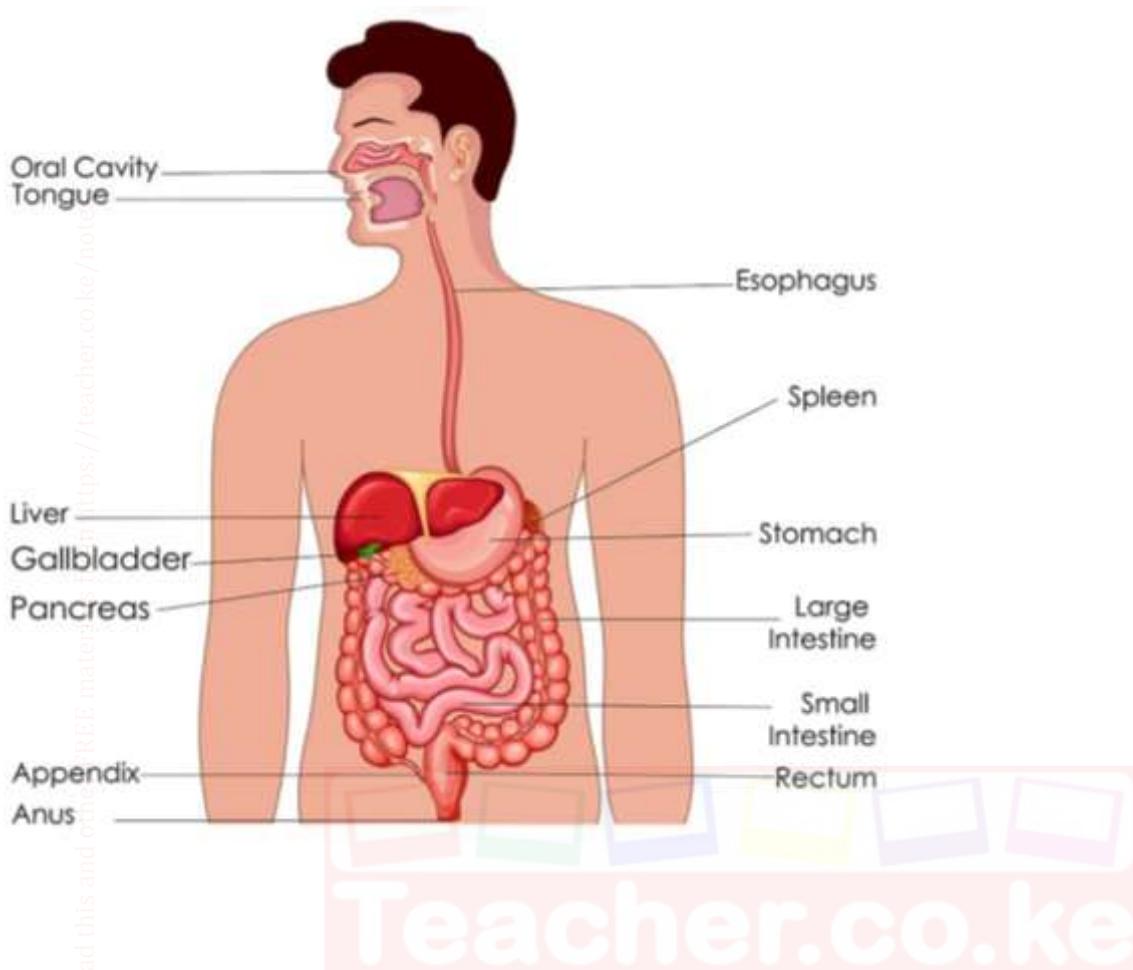
- This is a group of organs whose functions are coordinated and synchronized to perform the same function.
- Organ systems are more pronounced in animals than in plants.
- Organ systems in animals include:

- **Digestive system** composed of organs such as oesophagus, stomach, intestines and their associated glands.
- **Circulatory system** composed of the heart, blood vessels (arteries, veins, capillaries).
- **Excretory system** composed of kidney, liver, and blood vessels.
- **Respiratory system** composed of trachea, bronchus, and lungs.
- **Reproductive system** composed of the reproductive organs and associated glands.
- **Nervous system** composed of the brain, spinal cord, eye, ear organs.

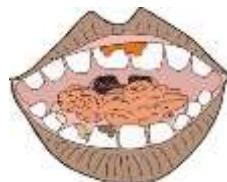
f) Appreciation of the Function of the Cell as a Basic Unit of Life:

The cell is the fundamental unit of life because:

- ✓ **Structural Basis:** All living organisms are composed of cells, either single or multiple. Cells are the building blocks of life.
- ✓ **Functional Basis:** All life processes, such as metabolism, growth, reproduction, response to stimuli, and homeostasis, occur within cells. Organelles within the cell carry out these specific functions.
- ✓ **Continuity of Life:** New cells arise from pre-existing cells through cell division. Genetic information is passed from one generation to the next through the replication and division of cells.
- ✓ **Complexity and Organization:** Despite their small size, cells exhibit a high level of internal organization, with various organelles working in a coordinated manner to maintain life.


Sub-Strand 2.2: Nutrition in Animals

2.2 Nutrition in Animals


Nutrition is the process by which organisms obtain and utilize nutrients for growth, energy, maintenance, and repair. In animals, this process typically involves ingestion, digestion, absorption, assimilation, and egestion. Digestion is the breakdown of large, insoluble food molecules into smaller, soluble molecules that can be absorbed into the bloodstream.

a) Digestion of Different Types of Food in Each Region of the Digestive System:

The human digestive system (alimentary canal) is a long, continuous tube that starts at the mouth and ends at the anus. Digestion occurs both mechanically (physical breakdown) and chemically (enzymatic breakdown).

- **Mouth (Oral Cavity):**

- ✓ **Mechanical Digestion:** Chewing (mastication) by teeth increases the surface area of food. The tongue mixes food with saliva.
- ✓ **Chemical Digestion:** Saliva, produced by salivary glands, contains the enzyme **salivary amylase (ptyalin)** which begins the breakdown of **starch** into smaller sugars (maltose).
- ✓ **Swallowing (Deglutition):** The tongue forms a bolus (a ball of chewed food) and pushes it into the pharynx.

- **Esophagus:**

- ✓ **No significant digestion occurs here.**
- ✓ The esophagus is a muscular tube that transports the bolus from the pharynx to the stomach through wave-like muscular contractions called **peristalsis**.

- **Stomach:**

- ✓ **Mechanical Digestion:** The stomach walls churn and mix the food with gastric juices, further breaking it down physically.
- ✓ **Chemical Digestion:** Gastric glands in the stomach lining secrete **gastric juice** containing:
 - ⊕ **Hydrochloric acid (HCl):** Provides an acidic environment (pH 1.5-2.5) that kills many bacteria and activates the enzyme pepsinogen.
 - ⊕ **Pepsinogen:** An inactive enzyme that is converted to **pepsin** by HCl. Pepsin begins the breakdown of **proteins** into smaller polypeptides.
 - ⊕ **Mucus:** Protects the stomach lining from the corrosive action of HCl and pepsin.
- ✓ The mixture of partially digested food and gastric juice is called **chyme**.
- **Small Intestine:** This is the primary site for the completion of digestion and absorption of nutrients. It is divided into three parts: the duodenum, jejunum, and ileum.
 - ✓ **Duodenum:** Receives chyme from the stomach and secretions from the pancreas and liver.
 - ⊕ **Pancreatic Juice:** Secreted by the pancreas into the duodenum, it contains:
 - ✓ **Pancreatic amylase:** Continues the breakdown of **starch** into maltose.
 - ✓ **Trypsinogen:** An inactive enzyme that is converted to **trypsin** by the enzyme enterokinase (produced by the small intestine lining). Trypsin continues the breakdown of **proteins** and polypeptides into smaller peptides.
 - ✓ **Lipase:** Breaks down **fats (lipids)** into fatty acids and glycerol.
 - ✓ **Bicarbonate ions:** Neutralize the acidic chyme from the stomach, providing an optimal pH for intestinal enzymes.
 - ⊕ **Bile:** Produced by the liver and stored in the gallbladder, bile is released into the duodenum to **emulsify fats**. Emulsification breaks down large fat globules into smaller droplets, increasing the surface area for lipase action. Bile does *not* contain enzymes.
 - ⊕ **Intestinal Juice:** Secreted by the lining of the small intestine, it contains enzymes such as:
 - ✓ **Maltase:** Breaks down **maltose** into glucose.
 - ✓ **Sucrase:** Breaks down **sucrose** into glucose and fructose.
 - ✓ **Lactase:** Breaks down **lactose** into glucose and galactose.
 - ✓ **Peptidases:** Complete the breakdown of small **peptides** into amino acids.
 - ✓ **Jejunum and Ileum:** Primarily involved in the absorption of digested nutrients into the bloodstream and lymphatic system.
- **Large Intestine (Colon):**
 - ✓ **No significant enzymatic digestion occurs here.**
 - ✓ **Absorption of water and electrolytes (salts)** takes place.
 - ✓ Bacteria in the large intestine ferment undigested materials, producing some vitamins (e.g., vitamin K) and gases.
 - ✓ The remaining indigestible material becomes **feces**, which is stored in the rectum.
- **Rectum and Anus:**
 - ✓ **Rectum:** Stores feces temporarily.

- ✓ **Anus:** The opening through which feces are eliminated from the body (egestion or defecation).

Summary of Enzyme Action on Different Food Types:

Food Type	Enzyme(s) Involved	Site of Action	End Product(s)
Carbohydrates (Starch, Sugars)	Salivary amylase, Pancreatic amylase, Maltase, Sucrase, Lactase	Mouth, Small Intestine (Duodenum)	Glucose, Fructose, Galactose
Proteins	Pepsin, Trypsin, Peptidases	Stomach, Small Intestine (Duodenum)	Amino Acids
Lipids (Fats)	Lipase	Small Intestine (Duodenum)	Fatty Acids and Glycerol

b) Adaptations of Parts of the Human Digestive System:

The structure of each part of the digestive system is specifically adapted to perform its function efficiently:

✳ Mouth:

- ✓ **Teeth:** Different types of teeth (incisors, canines, premolars, molars) are adapted for cutting, tearing, and grinding food, increasing surface area.
- ✓ **Tongue:** Muscular organ that manipulates food, mixes it with saliva, and forms a bolus for swallowing. Taste buds on the tongue allow for the detection of different tastes, influencing food intake.
- ✓ **Salivary Glands:** Produce saliva containing amylase to start carbohydrate digestion and mucus for lubrication.

✳ Esophagus:

- ✓ **Muscular Walls:** Allow for peristalsis, the rhythmic contractions that propel food down to the stomach, even against gravity.

✳ Stomach:

- ✓ **Muscular Walls:** Enable churning and mixing of food with gastric juices, aiding mechanical digestion.
- ✓ **Folded Lining (Rugae):** Increase the surface area for secretion of gastric juices and allow for stomach expansion.
- ✓ **Gastric Glands:** Specialized cells in the lining secrete HCl, pepsinogen, and mucus.
- ✓ **Sphincters (Cardiac and Pyloric):** Control the movement of food into and out of the stomach, preventing backflow.

✳ Small Intestine:

- ✓ **Long and Coiled:** Provides a large surface area for digestion and absorption.
- ✓ **Villi:** Finger-like projections of the inner lining that significantly increase the surface area for absorption.
- ✓ **Microvilli:** Tiny projections on the surface of the epithelial cells lining the villi, further increasing the surface area for absorption.

- ✓ **Thin Walls:** Allow for efficient diffusion of digested nutrients into the blood and lymph capillaries within the villi.
- ✓ **Rich Blood Supply:** Maintains a concentration gradient for efficient absorption.
- ✓ **Lacteals:** Lymphatic vessels within the villi that absorb fats and fat-soluble vitamins.
- ✓ **Enzyme Secretion:** The lining secretes enzymes that complete the digestion of carbohydrates and proteins.

Large Intestine:

- ✓ **Wide Diameter:** Allows for the storage and compaction of undigested material.
- ✓ **Haustra:** Pouches in the wall that allow for expansion and efficient water absorption.
- ✓ **Goblet Cells:** Secrete mucus to lubricate the passage of feces.
- ✓ **Rich in Gut Bacteria:** Aid in the fermentation of undigested material and the synthesis of some vitamins.

c) Performing Experiments to Determine the Presence of Different Nutrients in Food:

Common food tests include:

❖ Test for Starch (Iodine Test):

- ✓ **Procedure:** Add a few drops of iodine solution (potassium iodide solution) to the food sample.
- ✓ **Observation:** A blue-black color indicates the presence of starch. If starch is absent, the iodine solution will remain brownish-yellow.

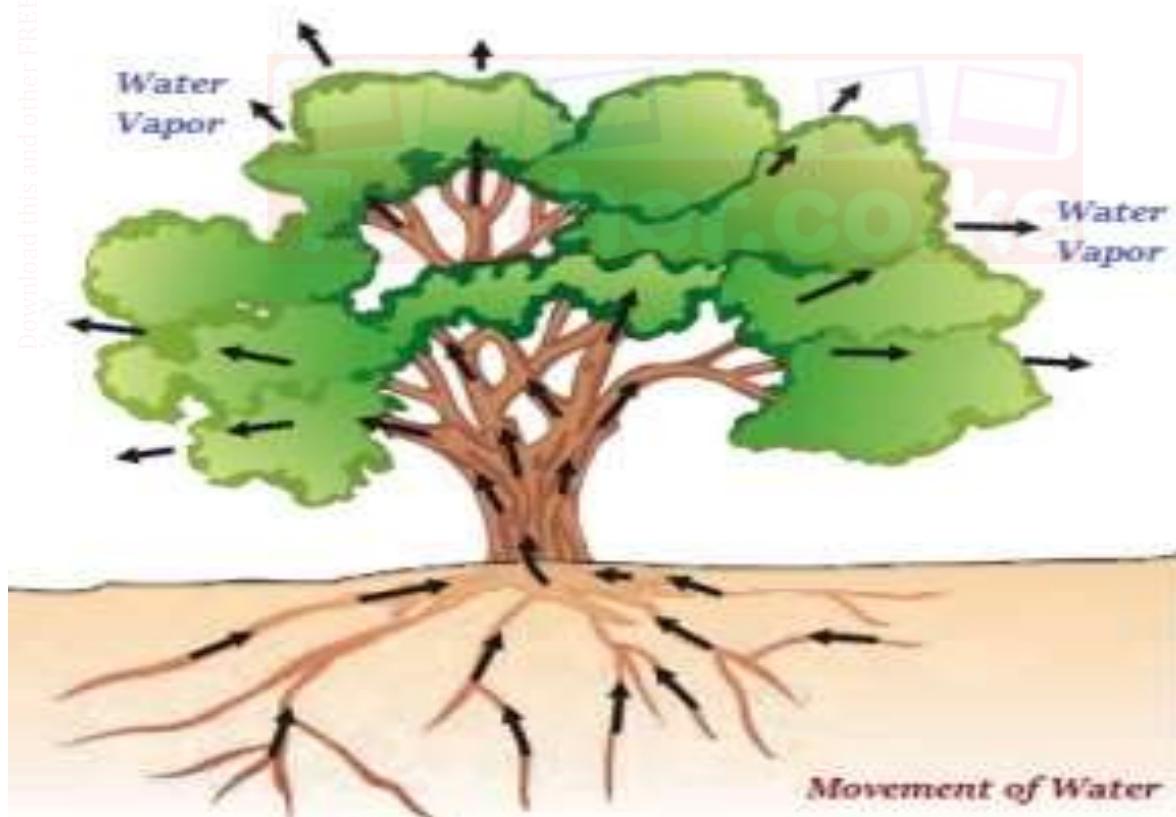
❖ Test for Reducing Sugars (Benedict's Test):

- ✓ **Procedure:** Add Benedict's solution to a small amount of the liquid food sample in a test tube. Heat the mixture gently in a water bath.
- ✓ **Observation:**
 - No reducing sugars: Solution remains blue.
 - Low concentration of reducing sugars: Green or yellow precipitate.
 - Moderate concentration of reducing sugars: Orange precipitate.
 - High concentration of reducing sugars: Brick-red precipitate.

❖ Test for Proteins (Biuret Test):

- ✓ **Procedure:** Add a few drops of sodium hydroxide solution to the food sample, followed by a few drops of copper(II) sulfate solution. Gently swirl the mixture.
- ✓ **Observation:** A purple or violet color indicates the presence of proteins. If proteins are absent, the solution will remain blue.

❖ Test for Fats (Emulsion Test):

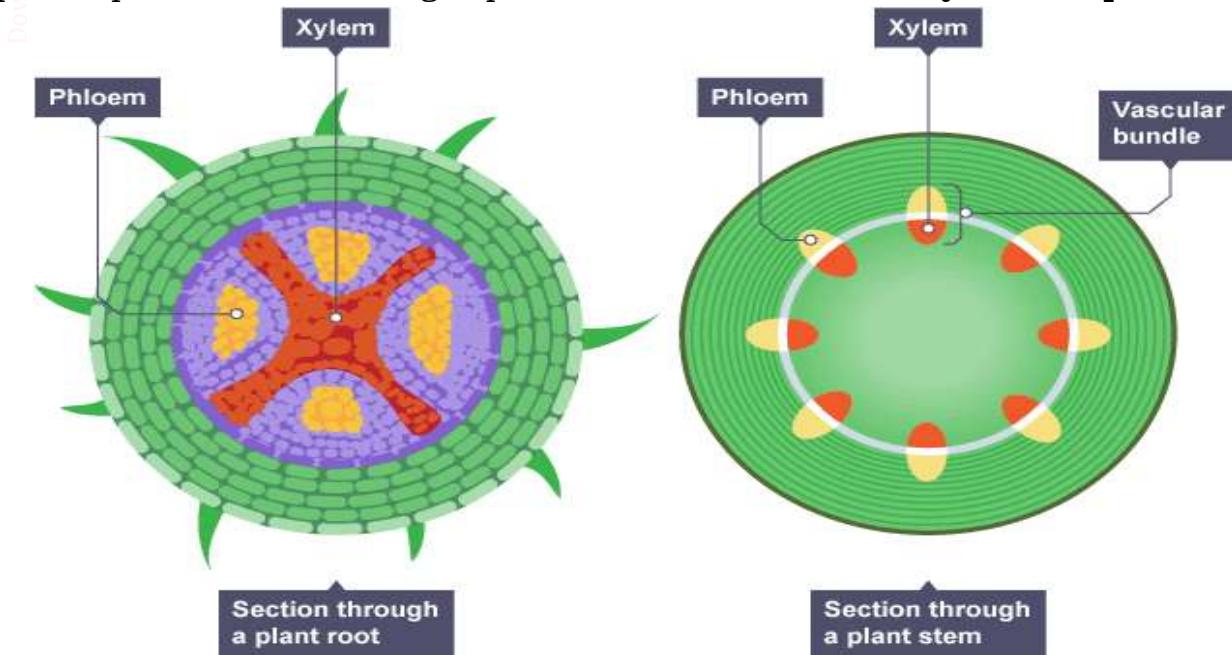

- ✓ **Procedure:** Rub a small amount of the food sample on a piece of unglazed paper. Allow it to dry.
- ✓ **Observation:** A translucent (oily) stain on the paper indicates the presence of fats.
- ✓ **Alternative Procedure (Ethanol Emulsion Test):** Dissolve a small amount of the food sample in ethanol. Pour this solution into a test tube containing water.
- ✓ **Observation:** A cloudy white emulsion indicates the presence of fats.

d) Role of Different Parts of the Digestive System:

Each part of the digestive system plays a vital and interconnected role in the overall process of obtaining nutrients essential for life.

- ✓ The **mouth** initiates both mechanical and chemical digestion, preparing food for further breakdown.
- ✓ The **esophagus** provides a pathway for food transport.
- ✓ The **stomach** continues mechanical and chemical digestion, particularly of proteins, and controls the release of chyme into the small intestine.
- ✓ The **small intestine** is the primary site for the completion of digestion and the absorption of the majority of nutrients. Its structure is highly adapted for maximizing surface area for absorption.
- ✓ The **large intestine** absorbs water and electrolytes, and its bacterial flora play important roles.
- ✓ The **rectum** stores waste, and the **anus** facilitates its elimination.

Sub-Strand 2.3: Transport in Plants



Transport in plants is essential for the survival and growth of these sessile organisms. It involves the movement of water and mineral salts from the roots to the rest of the plant (mainly the leaves) and the movement of manufactured food (sugars) from the leaves to other parts of the plant where they are needed for energy, growth, and storage.

- ⊕ Transport is the movement of substances within an organism.
- ⊕ All living cells require oxygen and food for various metabolic processes.
- ⊕ These substances must be transported to the cells.
- ⊕ Metabolic processes in the cells produce excretory products which should be eliminated before they accumulate.
- ⊕ The excretory products should be transported to sites of excretion.
- ⊕ Organisms like amoeba are unicellular.
- ⊕ They have a large surface area to volume ratio.
- ⊕ The body is in contact with the environment.
- ⊕ Diffusion is adequate to transport substances across the cell membrane and within the organism.
- ⊕ Large multi-cellular organisms have complex structure where cells are far from each other hence diffusion alone cannot meet the demand for supply and removal of substances.
- ⊕ Therefore an elaborate transport system is necessary.
- ⊕ Simple plants such as mosses and liverworts lack specialized transport system.
- ⊕ Higher plants have specialized transport systems known as the vascular bundle.
- ⊕ Xylem transports water and mineral salts.
- ⊕ Phloem transports dissolved food substances like sugars.

a) Describe Transport in Plants:

Transport in plants occurs through specialized vascular tissues: **xylem** and **phloem**.

✓ **Xylem:**

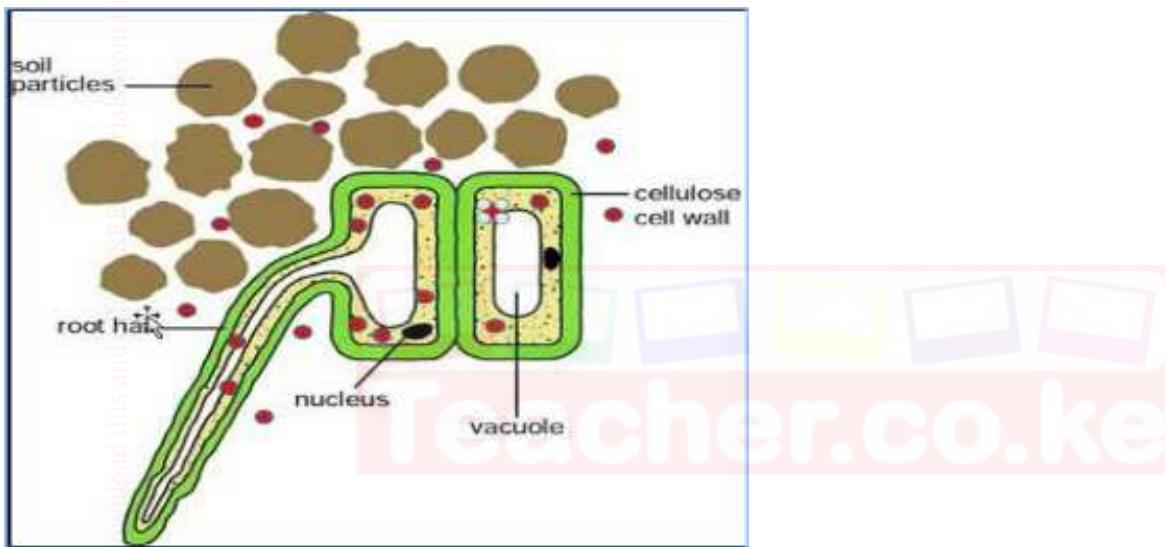
- ✓ **Function:** Primarily responsible for the transport of water and dissolved mineral salts from the roots upwards to the rest of the plant. This upward movement is called the **ascent of sap**. Xylem also provides structural support to the plant.
- ✓ **Structure:** Xylem tissue consists of:
 - ❖ **Tracheids:** Long, tapered cells with pits (thin areas in the cell wall) that allow water to move laterally between adjacent tracheids. They are dead and hollow at maturity. Found in all vascular plants.
 - ❖ **Vessels:** Wider, shorter cells joined end-to-end to form continuous tubes. The end walls have perforations (holes) that allow for more efficient water flow. They are also dead and hollow at maturity. Predominant in angiosperms (flowering plants).
 - ❖ **Xylem parenchyma:** Living cells involved in storage and lateral transport of water and solutes.
 - ❖ **Xylem fibers (sclerenchyma):** Provide structural support.

Discussion:

✓ **Transport in plants happens through the stem and the roots of the plant**

Plant Roots

Functions of Roots in Plants


The main functions of roots are;

- Anchorage.
- absorption.
- storage.
- gaseous exchange.

Structure of Roots and Root Hairs

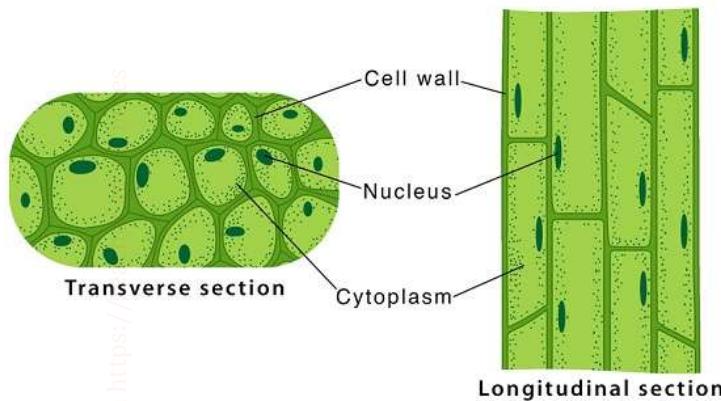
- The outermost layer in a root is the **piliferous layer**.
- This is a special epidermis of young roots whose cells give rise to root hairs.
- Root hairs are microscopic outgrowths of epidermal cells.
- They are found just behind the root tip.
- They are one cell thick for efficient absorption of substances.
- They are numerous and elongated providing a large surface area for absorption of water and mineral salts.
- Root hairs penetrate the soil and make close contact with it.
- Below the piliferous layer is the cortex.
- This is made up of loosely packed, thin walled parenchyma cells.

- Water molecules pass through this tissue to reach the **vascular bundles**.
- In some young plant stems, cortex cells contain chloroplasts.
- The **endodermis (starch sheath)** is a single layer of cells with starch grains.
- The endodermis has a casparyan strip which has an impervious deposit controlling the entry of water and mineral salts into xylem vessels.
- Pericycle forms a layer next to the endodermis.
- Next to the **pericycle** is the vascular tissue.
- In the Dicotyledonous root, xylem forms a star shape in the centre, with phloem in between the arms.
- It has no pith. In monocotyledonous root, xylem alternates with phloem and there is a pith in the centre.

Internal Structure of a Root Hair Cell

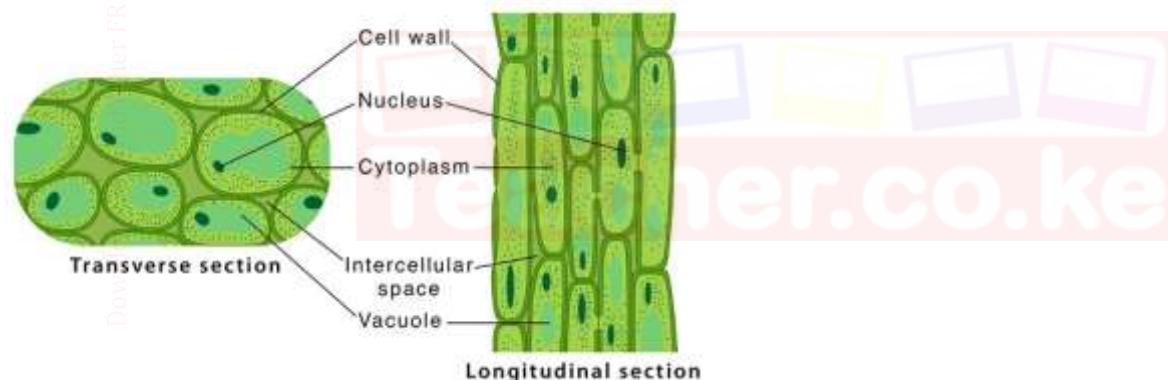
Function of the Stem

The main functions of the stem are;


Support and exposure of leaves and flowers to the environment,

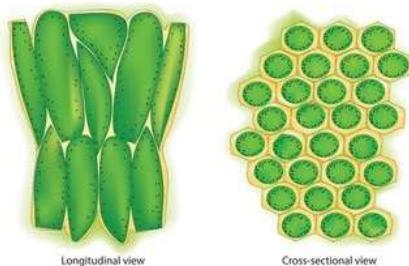
1. Conducting water and mineral salts
2. Conducting manufactured food from leaves to other parts of the plant.

- In monocotyledonous stems, vascular bundles are scattered all over the stem, while in dicotyledonous stems vascular bundles are arranged in a ring.
- Vascular bundles are continuous from root to stems and leaves.
- The epidermis forms a single layer of cells enclosing other tissues.
- The outer walls of the cells have waxy cuticle to prevent excessive loss of water.
- The cortex is a layer next to the epidermis.
- It has **collenchyma, parenchyma and sclerenchyma cells**.


a) Collenchyma

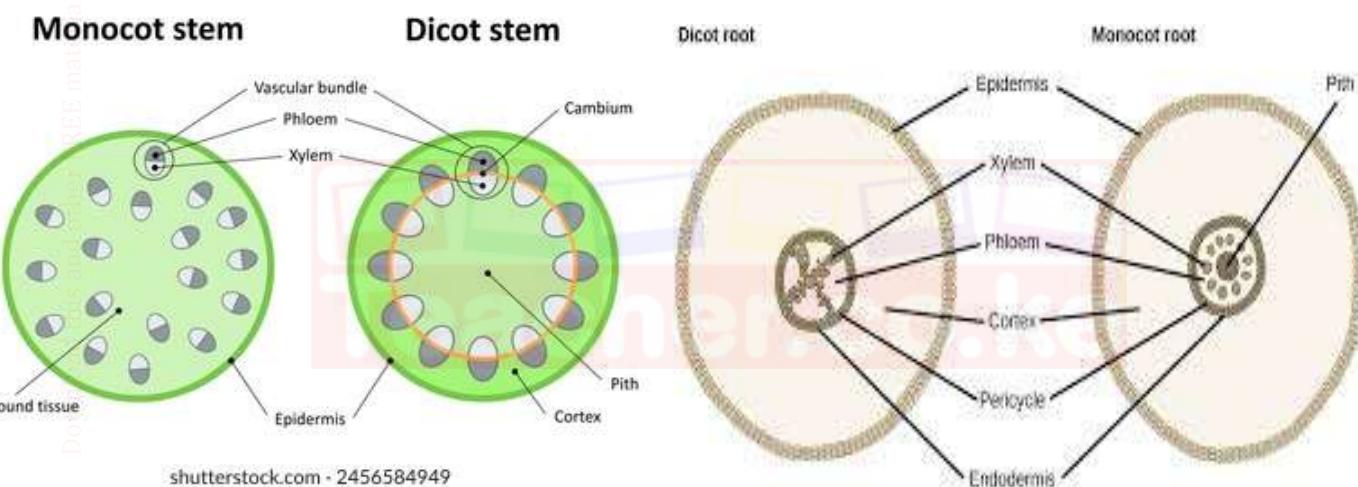
- Is next to the epidermis and has thickened walls at the corners which strengthen the stem.

b) Parenchyma

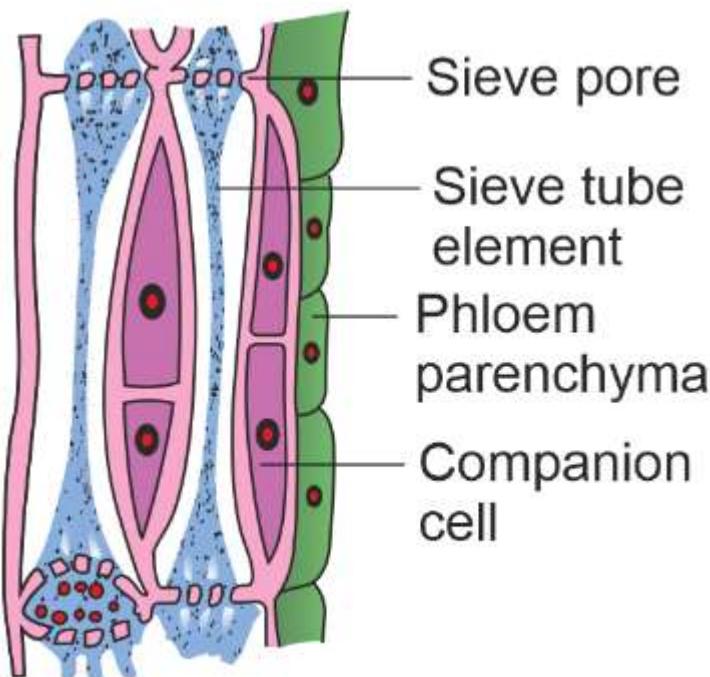

- Cells are irregular in shape, thin walled and loosely arranged hence creating intercellular spaces filled with air.
- They are packing tissues and food storage areas.

c) Sclerenchyma

- Cells are closely connected to vascular bundles.
- These cells are thickened by deposition of lignin and they provide support to plants.

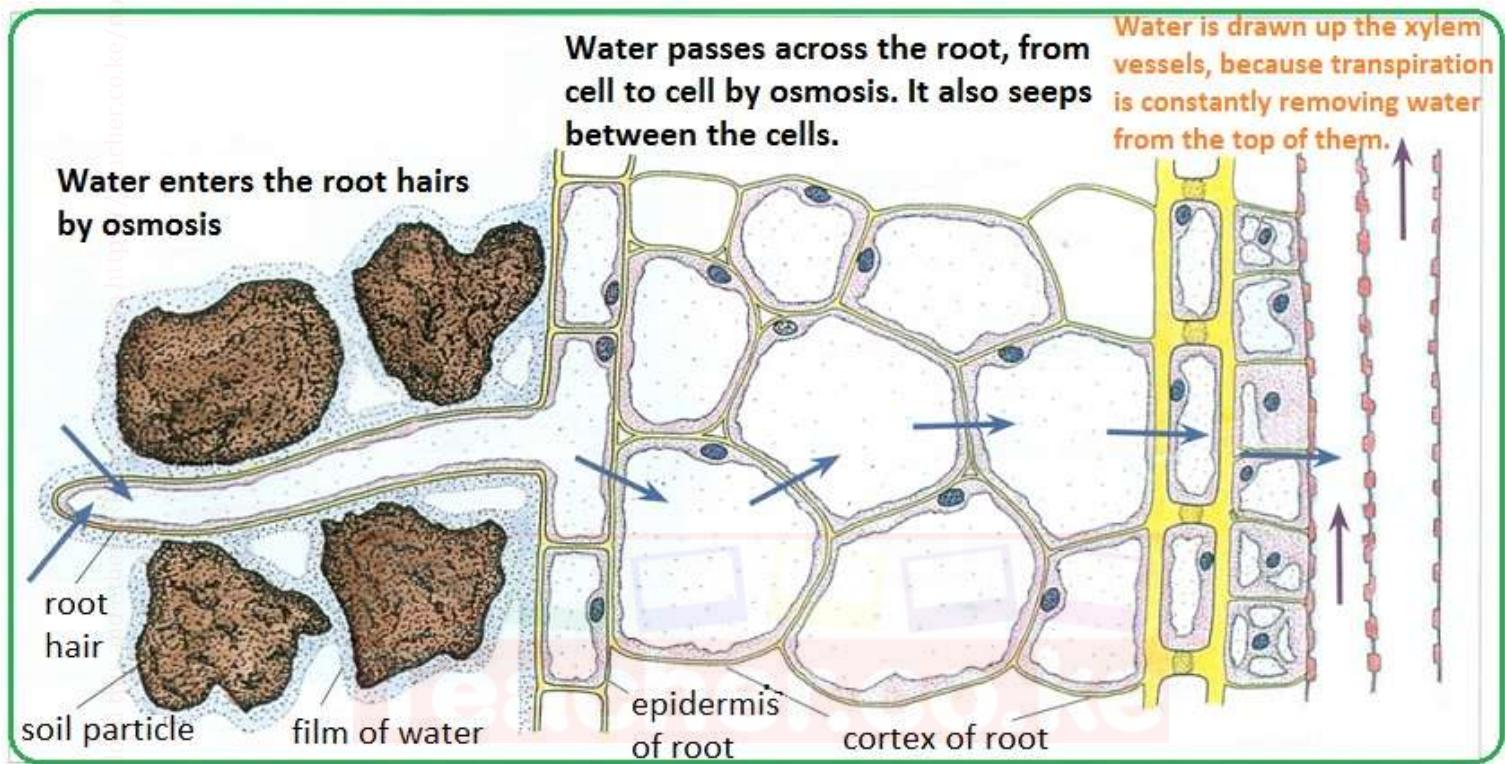

Sclerenchyma Tissue

d) Pith


- Is the central region having parenchyma cells.

Xylem vessels of monocots and dicots stem and roots.

shutterstock.com - 2456584949


✓ **Phloem:**

- ✓ **Function:** Responsible for the transport of manufactured food (sugars, mainly sucrose) produced during photosynthesis in the leaves to other parts of the plant where they are needed. This movement can be upwards or downwards and is called **translocation**.
- ✓ **Structure:** Phloem tissue consists of:
 - ❖ **Sieve tube elements:** Long, living cells joined end-to-end to form sieve tubes. They lack a nucleus, vacuole, and ribosomes at maturity but have cytoplasm and a plasma membrane. The end walls have sieve plates with pores that allow for the flow of cytoplasm and dissolved substances.
 - ❖ **Companion cells:** Living parenchyma cells closely associated with sieve tube elements. They have a nucleus and other organelles and are thought to support the function of sieve tube elements (e.g., providing ATP).
 - ❖ **Phloem parenchyma:** Living cells involved in storage and lateral transport of sugars.
 - ❖ **Phloem fibers (sclerenchyma):** Provide structural support.

b) Absorption of Water and Mineral Salts:

Plants absorb water and mineral salts from the soil primarily through their **root hair cells**.

- **Root Hair Cells:** These are extensions of epidermal cells in the root, greatly increasing the surface area available for absorption.
- **Absorption of Water:** Water moves into the root hair cells by **osmosis**. Osmosis is the movement of water molecules from a region of higher water potential (lower solute concentration in the soil water) to a region of lower water potential (higher solute concentration in the cell sap of root hair cells) across a semi-permeable membrane.
- **Absorption of Mineral Salts:** Mineral salts are absorbed by the root hair cells through two main mechanisms:
 - **Active Transport:** This process requires energy (ATP) to move mineral ions against their concentration gradient (from a lower concentration in the soil to a higher concentration in the root cells). Specific carrier proteins in the cell membrane bind to the mineral ions and facilitate their movement across the membrane. Examples include the uptake of nitrate, phosphate, and potassium ions.
 - **Passive Transport:** Some mineral ions can move into the root cells along their concentration gradient (from a higher concentration in the soil to a lower concentration in the root cells) through diffusion or facilitated diffusion (with the help of membrane proteins but without requiring energy).

Movement of Water and Minerals Across the Root:

Once absorbed by the root hair cells, water and mineral salts move across the root cortex to the vascular cylinder (stele) where the xylem is located. This movement can occur via three pathways:

- **Apoplast Pathway:** Water and minerals move through the cell walls and intercellular spaces without crossing any cell membranes. This pathway is blocked by the Caspary strip, a waterproof band of suberin in the cell walls of the endodermis (the innermost layer of the cortex).
- **Symplast Pathway:** Water and minerals move through the cytoplasm of cells connected by plasmodesmata (cytoplasmic bridges). This pathway involves crossing the cell membrane of the root hair cell.
- **Vacuolar Pathway:** Similar to the symplast pathway but water and minerals can also move into and out of vacuoles of the cortical cells.

To enter the xylem, water and minerals must eventually cross the cell membrane of the endodermal cells and enter the symplast pathway due to the Caspary strip. This ensures that the plant can control the uptake of water and minerals.

Ascent of Sap (Upward Movement of Water and Minerals):

The upward movement of water and dissolved minerals in the xylem is primarily driven by the **transpiration pull**. This is explained by the **cohesion-tension theory**:

1. **Transpiration:** The loss of water vapor from the aerial parts of the plant (mainly leaves) through the stomata (pores on the leaf surface). This creates a negative water potential (tension or suction) in the mesophyll cells of the leaves.
2. **Cohesion:** Water molecules are attracted to each other due to hydrogen bonding (cohesion). This creates a continuous column of water in the xylem vessels from the roots to the leaves.
3. **Adhesion:** Water molecules are also attracted to the walls of the xylem vessels (adhesion), which helps to counteract gravity and maintain the continuous water column.
4. **Tension (Transpiration Pull):** The negative water potential in the leaves pulls the water column upwards through the xylem due to cohesion and adhesion. As water is lost from the leaves, more water is drawn up from the roots.
5. **Root Pressure:** In some cases, especially at night when transpiration rates are low, the accumulation of mineral salts in the roots can lower the water potential, causing water to move into the roots by osmosis. This creates a positive pressure (root pressure) that can push water a short distance up the xylem. Guttation (the exudation of water droplets from leaf margins) is an example of root pressure in action. However, root pressure is generally considered a minor force in the ascent of sap in tall trees.

c) Translocation (Transport of Manufactured Food):

Translocation is the movement of sugars (mainly sucrose) and other organic molecules from the source (usually the leaves where photosynthesis occurs) to the sink (any part of the plant that needs or stores sugars, such as roots, growing shoots, fruits, seeds). This process occurs in the phloem and is explained by the **pressure-flow hypothesis (mass flow hypothesis)**:

1. **Loading at the Source:** At the source (e.g., a leaf), sucrose produced during photosynthesis is actively transported into the companion cells and then into the sieve tube elements of the phloem. This active loading of sucrose increases the solute concentration in the sieve tubes, lowering the water potential.
2. **Water Movement into Sieve Tubes:** Due to the lower water potential in the sieve tubes at the source, water moves into the phloem from the adjacent xylem by osmosis. This influx of water increases the pressure potential (turgor pressure) in the sieve tubes at the source.
3. **Mass Flow:** The high pressure potential at the source pushes the sucrose-rich phloem sap towards the sink, where the pressure potential is lower. The movement of the phloem sap is a bulk flow or mass flow driven by the pressure gradient.
4. **Unloading at the Sink:** At the sink (e.g., a root), sucrose is actively transported out of the sieve tube elements into the surrounding sink cells where it is used for respiration or converted into starch for storage. This unloading of sucrose increases the water potential in the sieve tubes.
5. **Water Movement out of Sieve Tubes:** Due to the higher water potential in the sieve tubes at the sink, water moves out of the phloem and back into the xylem by osmosis. This maintains a low pressure potential at the sink, facilitating the continuous flow of phloem sap from the source to the sink.

d) Importance of Transpiration in the Sustainability of Plant Life:

Transpiration plays several crucial roles in the life of a plant:

- **Water Transport:** It is the primary driving force for the upward movement of water from the roots to the leaves, ensuring that all parts of the plant receive the necessary water for various metabolic processes, including photosynthesis.
- **Mineral Uptake:** The flow of water driven by transpiration also facilitates the transport of dissolved mineral salts from the roots to the aerial parts of the plant. These minerals are essential for growth, development, and various physiological functions.
- **Cooling Effect:** The evaporation of water from the leaf surface during transpiration has a cooling effect on the plant, similar to sweating in animals. This helps to prevent the leaves from overheating, especially in hot and sunny conditions, which can denature enzymes and damage tissues.
- **Turgor Pressure:** The continuous uptake of water due to transpiration helps to maintain turgor pressure in plant cells, especially in the leaves and stems. Turgor pressure provides rigidity and support to non-woody plants and helps to keep the leaves expanded for efficient photosynthesis.

e) Factors Affecting Transpiration:

The rate of transpiration is influenced by both environmental factors and structural adaptations of the plant:

- **Environmental Factors:**

- ✓ **Temperature:** Higher temperatures increase the rate of evaporation from the leaf surface, thus increasing transpiration.
- ✓ **Humidity:** Higher humidity in the air reduces the water potential gradient between the leaf and the atmosphere, decreasing the rate of transpiration.
- ✓ **Wind Speed:** Wind removes the layer of humid air surrounding the leaf, increasing the water potential gradient and thus increasing transpiration.
- ✓ **Light Intensity:** Higher light intensity often leads to the opening of stomata (to allow for carbon dioxide uptake for photosynthesis), which also increases water loss through transpiration.

- **Structural Aspects of the Plant:**

- ✓ **Leaf Surface Area:** Larger leaves have a greater surface area for water loss, leading to higher transpiration rates.
- ✓ **Stomatal Density and Distribution:** A higher number of stomata per unit area and their location (e.g., mainly on the lower surface to reduce direct sunlight exposure) can affect transpiration rates.
- ✓ **Presence of Cuticle:** The cuticle is a waxy layer on the leaf surface that reduces water loss. A thicker cuticle reduces transpiration.
- ✓ **Presence of Hairs or Trichomes:** Hairs on the leaf surface can trap a layer of humid air, reducing the water potential gradient and thus reducing transpiration.
- ✓ **Sunken Stomata:** Stomata located in pits or depressions on the leaf surface can reduce water loss by creating a humid microenvironment around the stomatal pores.
- ✓ **Leaf Size and Shape:** Smaller or needle-like leaves have a smaller surface area to volume ratio, which can reduce water loss. Leaf folding or rolling can also reduce surface area exposed to the environment.

f) Appreciation of the Role of Transport in Plants:

The transport systems in plants are essential for their survival and play a crucial role in the ecosystem. Without efficient transport of water, minerals, and sugars, plants would not be able to:

- ✓ **Grow and develop:** Nutrients and water are required for cell division, elongation, and differentiation.
- ✓ **Carry out photosynthesis:** Water is a reactant, and sugars are the products that need to be transported to other parts of the plant for energy and storage.
- ✓ **Maintain turgor pressure:** Water transport is crucial for keeping cells turgid, providing structural support.
- ✓ **Cool themselves:** Transpiration helps regulate plant temperature.
- ✓ **Distribute essential substances:** Hormones and other signaling molecules need to be transported throughout the plant.

Sub-Strand 2.4: Respiration

- ✓ Respiration is a fundamental biological process by which living organisms release energy from the breakdown of organic food substances (respiratory substrates), usually glucose.
- ✓ This energy is then used to fuel various metabolic activities necessary for life.

a) Meaning of Respiration in Living Things:

Respiration involves a series of enzyme-controlled chemical reactions that break down glucose (or other organic molecules like fats and proteins) to release energy in the form of Adenosine Triphosphate (ATP). ATP is the primary energy currency of the cell, used to power processes such as muscle contraction, nerve impulse transmission, active transport, growth, and repair. Respiration also produces waste products like carbon dioxide and water.

b) Describe Aerobic and Anaerobic Respiration in Living Things:

There are two main types of respiration, depending on the availability of oxygen:

- **Aerobic Respiration:**
 - ❖ **Definition:** A type of respiration that requires oxygen to break down glucose completely into carbon dioxide, water, and a large amount of ATP.
 - ❖ **Equation (for glucose):** $C_6H_{12}O_6 \text{ (glucose)} + 6O_2 \text{ (oxygen)} \rightarrow 6CO_2 \text{ (carbon dioxide)} + 6H_2O \text{ (water)} + \text{Energy (ATP)}$
 - ❖ **Stages:** Aerobic respiration occurs in three main stages:
 1. **Glycolysis:** Occurs in the cytoplasm. Glucose is broken down into two molecules of pyruvate (a 3-carbon compound), producing a small amount of ATP and NADH (a reduced coenzyme carrying high-energy electrons).
 2. **Krebs Cycle (Citric Acid Cycle):** Occurs in the matrix of the mitochondria. Pyruvate is converted to acetyl-CoA, which enters a cyclical series of reactions. This cycle further breaks down the carbon compounds, releasing carbon dioxide, ATP, NADH, and FADH₂ (another reduced coenzyme).
 3. **Electron Transport Chain (Oxidative Phosphorylation):** Occurs on the inner mitochondrial membrane. The high-energy electrons carried by NADH and FADH₂ are passed along a series of electron carriers, releasing energy. This energy is used to pump protons (H⁺ ions) across the membrane, creating an electrochemical gradient. The flow of protons back across the membrane through ATP synthase drives the synthesis of a large amount of ATP. Oxygen acts as the final electron acceptor, combining with electrons and protons to form water.
 - ❖ **Energy Yield:** Aerobic respiration yields a significantly large amount of ATP per molecule of glucose (approximately 32-38 ATP molecules).
 - ❖ **Organisms:** Most plants and animals, as well as many microorganisms, rely on aerobic respiration for their energy needs.
- **Anaerobic Respiration:**
 - ❖ **Definition:** A type of respiration that does not require oxygen. Glucose is only partially broken down, yielding a much smaller amount of ATP and producing other end products in addition to carbon dioxide.

❖ **Types:** There are two main types of anaerobic respiration:

1. **Alcoholic Fermentation:** Occurs in yeast and some bacteria. Pyruvate is converted into ethanol (alcohol) and carbon dioxide, with a small amount of ATP produced during glycolysis.
 - ✓ **Equation:** $C_6H_{12}O_6$ (glucose) $\rightarrow 2C_2H_5OH$ (ethanol) + $2CO_2$ (carbon dioxide) + Energy (ATP)
2. **Lactic Acid Fermentation:** Occurs in some bacteria (e.g., those used in yogurt production) and in animal muscle cells during strenuous activity when oxygen supply cannot meet the demand. Pyruvate is converted into lactic acid, with a small amount of ATP produced during glycolysis.
 - ✓ **Equation:** $C_6H_{12}O_6$ (glucose) $\rightarrow 2C_3H_6O_3$ (lactic acid) + Energy (ATP)

❖ **Oxygen Debt:** During strenuous exercise in animals, when anaerobic respiration occurs in muscle cells due to insufficient oxygen supply, lactic acid accumulates. This build-up of lactic acid causes muscle fatigue and pain. **Oxygen debt** refers to the extra oxygen required after exercise to break down the accumulated lactic acid into carbon dioxide and water, or to convert it back to glucose in the liver. This is why we continue to breathe heavily after intense activity.

❖ **Energy Yield:** Anaerobic respiration yields a very small amount of ATP per molecule of glucose (only the 2 ATP produced during glycolysis).

❖ **Organisms:** Some microorganisms are obligate anaerobes (can only survive in the absence of oxygen), while others are facultative anaerobes (can respire aerobically if oxygen is present but can switch to anaerobic respiration if oxygen is absent). Animal muscle cells can temporarily carry out anaerobic respiration during intense activity.

c) Respiratory Quotient and Type of Substrate and Respiration in Living Things:

The **Respiratory Quotient (RQ)** is the ratio of the volume of carbon dioxide produced to the volume of oxygen consumed during respiration over a period of time.

❖ **Equation:** $RQ = \text{Volume of } CO_2 \text{ produced} / \text{Volume of } O_2 \text{ consumed}$

The RQ value can provide information about the type of respiratory substrate being used and, to some extent, the type of respiration occurring.

❖ **Carbohydrates:** When carbohydrates (like glucose) are the primary respiratory substrate in aerobic respiration, the RQ is typically **1.0**.

- ✓ Example: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$
- ✓ $RQ = 6CO_2 / 6O_2 = 1.0$

❖ **Fats (Lipids):** Fats are more reduced than carbohydrates and require more oxygen for their complete oxidation. The RQ for fats is typically around **0.7**.

❖ Example (simplified for a common fatty acid, tripalmitin):

- ✓ $2C_{51}H_{100}O_6 + 145O_2 \rightarrow 102CO_2 + 98H_2O$.
- ✓ **Calculation:** $RQ = CO_2 \text{ produced} / O_2 \text{ consumed} = 102 / 145 \approx 0.7$.

- ✓ **Proteins:** The RQ for proteins is typically around **0.8**. The oxidation of proteins involves complex pathways and the RQ can vary depending on the specific amino acids being metabolized.

- ❖ **Anaerobic Respiration:** In anaerobic respiration, oxygen is not consumed. Therefore, the RQ is theoretically **infinity** (a volume of CO_2 produced divided by zero oxygen consumed in alcoholic fermentation) or undefined in lactic acid fermentation where no net CO_2 is produced. However, RQ is primarily a concept used for aerobic respiration.

d) Factors Affecting Respiration in Living Things:

Several factors can influence the rate of respiration in living organisms:

- ✓ **Temperature:** Generally, the rate of respiration increases with increasing temperature up to an optimal point, beyond which enzyme activity decreases, and respiration rate declines.
- ✓ **Oxygen Availability:** For aerobic respiration, the availability of oxygen is a crucial limiting factor. Low oxygen levels will reduce the rate of aerobic respiration and may trigger anaerobic respiration in facultative anaerobes or lead to oxygen debt in animals.
- ✓ **Glucose Availability (Respiratory Substrate Concentration):** The amount of available glucose or other respiratory substrates directly affects the rate of respiration. Higher substrate availability generally leads to a higher rate of respiration, provided other factors are not limiting.
- ✓ **Enzyme Activity:** The rate of respiration is controlled by enzymes. Factors affecting enzyme activity, such as pH and the presence of inhibitors, will also affect the rate of respiration.
- ✓ **Metabolic Demand:** Organisms or tissues with higher metabolic demands (e.g., actively growing tissues, exercising muscles) will have higher rates of respiration to meet their energy requirements.
- ✓ **Surface Area to Volume Ratio (in organisms/cells):** Smaller organisms or cells with a higher surface area to volume ratio can exchange gases (oxygen and carbon dioxide) more efficiently, potentially supporting higher rates of respiration.

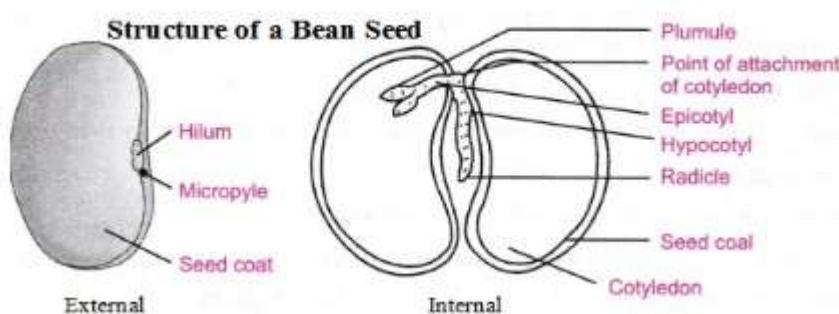
e) Describe the Economic Importance of Anaerobic Respiration:

While aerobic respiration is the primary energy-producing pathway for most organisms, anaerobic respiration has significant economic applications:

- ✓ **Food Production:**

- ❖ **Yogurt and Cheese Production:** Lactic acid fermentation by bacteria (e.g., *Lactobacillus*) is essential in the production of yogurt, cheese, and other fermented dairy products. The lactic acid produced contributes to the characteristic flavor and texture and acts as a preservative.
- ❖ **Sauerkraut and Kimchi Production:** Lactic acid fermentation of vegetables like cabbage (sauerkraut) and various vegetables (kimchi) by bacteria preserves them and creates unique flavors.
- ❖ **Pickling:** Lactic acid fermentation plays a role in the pickling of some vegetables.

- ✓ **Silage Production:** Anaerobic fermentation of green fodder (e.g., grass, maize) by microorganisms in airtight silos produces silage, a valuable feed for livestock, especially during winter. The lactic acid produced preserves the fodder.
- ✓ **Biogas Production:** Anaerobic digestion of organic waste (e.g., animal manure, sewage sludge, plant residues) by bacteria in biogas digesters produces biogas, which is primarily methane (CH_4) and carbon dioxide (CO_2). Biogas can be used as a renewable energy source for heating, cooking, and electricity generation. This process also helps in waste management.
- ✓ **Industrial Chemical Production:** Some industrial chemicals, such as ethanol (used as a solvent and in the production of other chemicals) and lactic acid (used in the food, pharmaceutical, and biodegradable plastics industries), are produced through anaerobic fermentation by microorganisms on a large scale.
- ✓ **Baking (Indirectly related):** While yeast fermentation produces carbon dioxide that causes bread to rise (a key economic aspect), the project excludes brewing, which also relies on yeast fermentation. However, the principle of gas production through anaerobic respiration is relevant in baking.

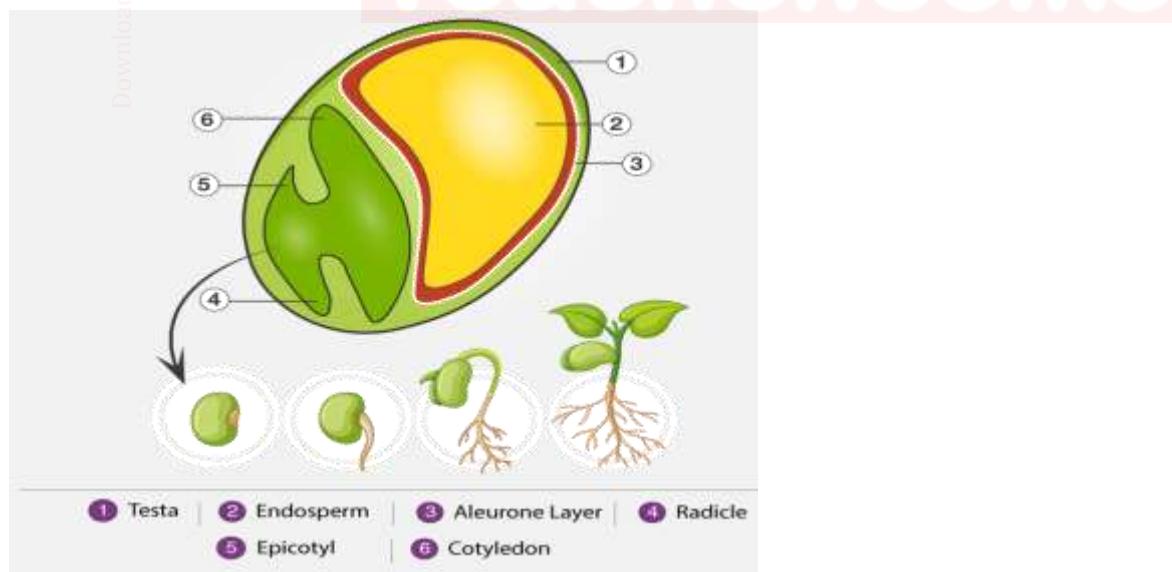

f) Significance of Respiration in Living Things:

Respiration is an absolutely vital process for all living organisms because:

- ✓ **Energy Production:** It is the primary way organisms obtain the energy needed to carry out all life processes, from basic cellular functions to complex activities like movement and growth.
- ✓ **Sustaining Life:** Without respiration, cells would not have the energy to maintain their organization, repair damage, or reproduce, leading to the death of the organism.
- ✓ **Interdependence of Life:** The carbon dioxide produced during respiration is a crucial reactant for photosynthesis in plants, forming a vital link in the carbon cycle and the flow of energy through ecosystems.
- ✓ **Adaptation to Environments:** The ability of some organisms to switch between aerobic and anaerobic respiration allows them to survive in environments with varying oxygen levels.

Sub-Strand 2.5: Plant Growth and Development

Plant growth and development are complex processes regulated by both internal (genetic and hormonal) and external (environmental) factors.



a) Explain the Meaning of Growth and Development in Plants:

- ✓ **Growth:** In plants, growth refers to an irreversible increase in size (length, diameter, volume) and dry mass due to cell division, cell elongation, and cell differentiation. It involves the synthesis of new protoplasm and the formation of new cellular structures. Growth in plants occurs mainly in specific regions called **meristems**, which are centers of active cell division.
- ✓ **Development:** Development encompasses all the changes that a plant undergoes throughout its life cycle, from seed germination to maturity, flowering, fruiting, and senescence (aging and death). It involves changes in form, structure, and function of different plant parts, including differentiation of cells and tissues, and the formation of organs. Development is influenced by both genetic programming and environmental cues.

b) Causes of Seed Dormancy:

Seed dormancy is a state in which viable seeds fail to germinate even when environmental conditions are seemingly favorable (adequate water, oxygen, and temperature). This is an adaptive mechanism that prevents germination at unfavorable times, ensuring seedling survival. Causes of seed dormancy include:

Seed Coat Dormancy (External Dormancy):

- ✓ **Impermeable Seed Coat:** The seed coat may be too hard or thick, preventing the entry of water or oxygen necessary for germination.
- ✓ **Mechanical Restriction:** A tough seed coat may physically prevent the embryo from expanding and breaking through.
- ✓ **Presence of Inhibitory Substances in the Seed Coat:** Certain chemical inhibitors like ABA abscisic Acid present in the seed coat can prevent germination. These inhibitors need to be leached out by water or broken down over time.

Embryo Dormancy (Internal or Physiological Dormancy):

- ✓ **Immature Embryo:** The embryo within the seed may not be fully developed at the time of dispersal and requires a period of after-ripening.
- ✓ **Presence of Endogenous Inhibitors in the Embryo:** The embryo itself may contain hormones or other chemical inhibitors that prevent germination. These inhibitors need to be broken down or their effects counteracted by specific environmental cues.
- ✓ **Requirement for Specific Environmental Signals:** Some embryos require specific environmental signals, such as a period of chilling (stratification) or exposure to light, to break dormancy and initiate germination.

Summary Factors that Cause Dormancy

- Embryo may not yet be fully developed.
- Presence of chemical inhibitors that inhibit germination in seeds e.g. Abscisic acid.
- Very low concentrations of hormones e.g. gibberellins and enzymes reduces the ability of seeds to germinate.
- Hard and impermeable seed coats prevent entry of air and water in some seeds e.g. wattle.
- In some seeds the absence of certain wavelengths of light make them remain dormant e.g. in some lettuce plants.
- Freezing of seeds during winter lowers their enzymatic activities rendering them dormant.

How to Break Seed Dormancy:

Various methods are used to break seed dormancy and promote germination:

- ✓ **Scarification:** Physically or chemically damaging the seed coat to make it permeable to water and oxygen. This can involve:
 - ✓ **Mechanical Scarification:** Abrading the seed coat with sandpaper, filing, or nicking it.
 - ✓ **Chemical Scarification:** Soaking seeds in acids (e.g., sulfuric acid) for a specific period.

- ✓ **Hot Water Treatment:** Soaking seeds in hot water for a short time, followed by cooling.
- ✓ **Stratification:** Exposing seeds to a period of cold, moist conditions (often mimicking winter) to break physiological dormancy. This is common for seeds of many temperate plants.
- ✓ **Leaching:** Soaking seeds in running water to remove water-soluble inhibitors present in the seed coat or embryo.
- ✓ **Light Exposure:** Some seeds require exposure to light (or specific wavelengths of light) to germinate.
- ✓ **Hormone Treatment:** Applying plant growth hormones like gibberellins can sometimes overcome embryo dormancy.
- ✓ **After-Ripening:** Storing dry seeds for a specific period after harvest can allow the embryo to mature or inhibitors to break down.

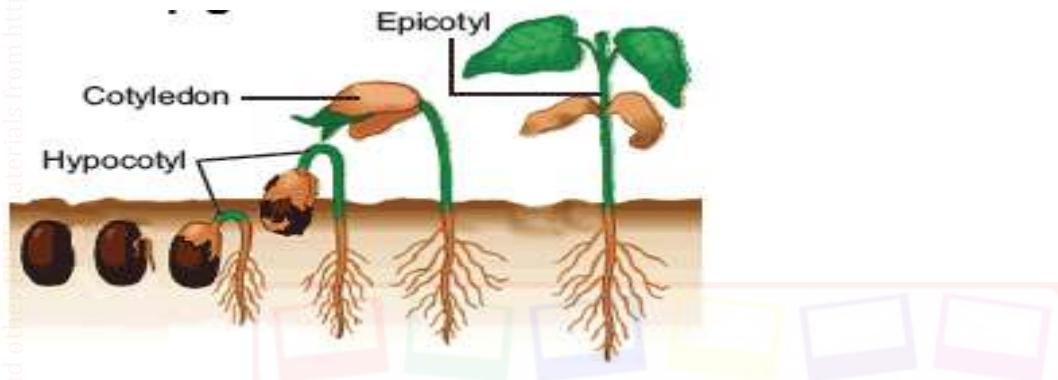
Summary Ways of Breaking Dormancy

- When the seed embryos are mature then the seed embryos can break dormancy and germinate.
- Increase in concentration of hormones e.g. cytokinins and gibberellins stimulate germination.
- Favourable environmental factors such as water, oxygen and suitable temperature.
- Some wavelengths of light trigger the production of hormones like gibberellins leading to breaking of dormancy.
- Scarification i.e. weakening of the testa is needed before seeds with hard impermeable seed coats can germinate. This is achieved naturally by saprophytic bacteria and fungi or by passing through the gut of animals. In agriculture the seeds of some plants are weakened by boiling, roasting and cracking e.g. wattle.

c) Conditions Necessary for Germination:

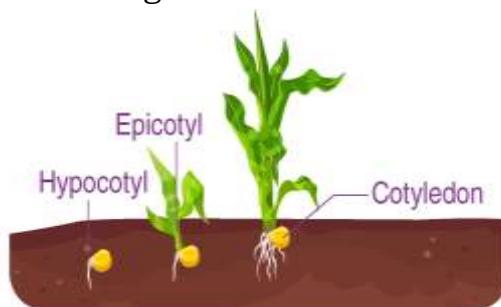
Seed germination is the process by which a dormant seed begins to sprout and grow into a seedling. The primary conditions necessary for germination are:

- ✚ **Water:** Water is essential for:
 - ✓ Rehydrating the dry seed, causing it to swell and the seed coat to rupture.
 - ✓ Activating enzymes that break down stored food reserves (starch, proteins, fats) in the endosperm or cotyledons into soluble forms that can be used by the developing embryo.
 - ✓ Providing a medium for metabolic reactions.
- ✚ **Oxygen:** Oxygen is required for aerobic respiration, which provides the energy needed for the embryo to grow and develop. Oxygen is necessary for the breakdown of stored food reserves.
- ✚ **Suitable Temperature:** Each type of seed has an optimal temperature range for germination. Temperature affects enzyme activity and metabolic rates. Temperatures that are too low or too high can inhibit or prevent germination.


■ **Light (for some seeds):** While not universally required, some seeds are positively photoblastic (require light to germinate), while others are negatively photoblastic (inhibited by light). The light requirement often depends on the size of the seed and the depth at which it is buried in the soil.

■ **Viability:** The seed must be alive and have a healthy embryo capable of growth.

d) Epigeal and Hypogeal Germination:


The position of the cotyledons (seed leaves) during germination distinguishes between two main types:

- **Epigeal Germination:**

- ✓ In this type of germination, the hypocotyl (the part of the seedling stem below the cotyledons) elongates and arches upwards, pulling the cotyledons above the ground.
- ✓ The cotyledons become photosynthetic and function as the first leaves of the seedling until the true leaves develop.
- ✓ Examples: Bean (common bean), castor bean, sunflower, onion.
- ✓ **Key Feature:** Cotyledons emerge above the soil surface.

- **Hypogeal Germination:**

- ✓ In this type of germination, the epicotyl (the part of the seedling stem above the cotyledons) elongates, while the hypocotyl remains short. The cotyledons remain below the ground.
- ✓ The cotyledons usually do not become photosynthetic and serve as storage organs, providing nutrients to the developing seedling until the true leaves emerge from the plumule (embryonic shoot).

- ✓ Examples: Pea, maize, groundnut, mango.
- ✓ **Key Feature:** Cotyledons remain below the soil surface.

e) Differences between Primary and Secondary Growth:

Plants exhibit two main types of growth in terms of increasing their size:

- **Primary Growth:**

- ✓ This is the increase in the length of the plant (stem and roots) and the formation of new leaves and flowers.
- ✓ It occurs at the **apical meristems**, which are located at the tips of shoots and roots.
- ✓ Cell division in the apical meristems produces new cells that differentiate into the primary tissues of the plant (epidermis, cortex, primary xylem, primary phloem).
- ✓ Primary growth is responsible for the plant reaching its mature height and developing its basic structure.
- ✓ All vascular plants exhibit primary growth.

- **Secondary Growth:**

- ✓ This is the increase in the girth (diameter or thickness) of the stem and roots.
- ✓ It occurs in woody dicots (e.g., trees, shrubs) and gymnosperms at the **lateral meristems**:
 - **Vascular Cambium:** A cylindrical layer of meristematic cells located between the primary xylem and primary phloem. It produces secondary xylem (wood) towards the inside and secondary phloem towards the outside.
 - **Cork Cambium (Phellogen):** A meristematic layer located in the outer cortex. It produces cork cells (phellem) towards the outside (forming the outer bark) and phelloderm (parenchyma cells) towards the inside.
- ✓ Secondary growth leads to the development of woody tissues, providing structural support and enabling plants to grow taller and live longer.
- ✓ Monocots typically lack secondary growth.

Summary Table:

Feature	Primary Growth	Secondary Growth
Location	Apical meristems (shoot and root tips)	Lateral meristems (vascular and cork cambium)
Direction of Growth	Increase in length	Increase in girth (diameter)
Tissues Produced	Primary xylem, primary phloem, cortex, epidermis	Secondary xylem (wood), secondary phloem, cork, phelloderm
Plants Exhibiting	All vascular plants	Mostly woody dicots and gymnosperms
Result	Elongation of stem and roots, formation of leaves and flowers	Thickening of stem and roots, formation of wood and bark

f) Role of Growth Hormones:

Plant growth and development are regulated by various chemical messengers called plant hormones or phytohormones. These hormones are produced in small amounts in specific parts of the plant and then transported to other regions where they exert their effects. Major plant hormones include:

■ **Auxins:**

- ✓ Primarily produced in shoot apical meristems, young leaves, and developing fruits.
- ✓ Promote cell elongation in shoots and roots (at optimal concentrations).
- ✓ Involved in apical dominance (inhibition of lateral bud growth by the apical bud).
- ✓ Play a role in phototropism (growth towards light) and gravitropism (growth response to gravity).
- ✓ Promote fruit development and differentiation of vascular tissues.
- ✓ Synthetic auxins are used as herbicides and in rooting powders.

■ **Gibberellins (GAs):**

- ✓ Produced in apical buds, young leaves, and developing seeds.
- ✓ Promote stem elongation, seed germination (breaking dormancy), flowering (in some plants), and fruit development.
- ✓ Can overcome dwarfism in some mutant plants.

■ **Cytokinins:**

- ✓ Primarily synthesized in root apical meristems and transported to other parts of the plant.
- ✓ Promote cell division (cytokinesis).
- ✓ Delay senescence (aging) in leaves.
- ✓ Interact with auxins in controlling apical dominance and promoting lateral bud growth.

■ **Abscisic Acid (ABA):**

- ✓ Produced in leaves, stems, roots, and developing seeds.
- ✓ Inhibits growth.
- ✓ Promotes dormancy in seeds and buds.
- ✓ Induces stomatal closure in response to water stress, reducing transpiration.
- ✓ Plays a role in stress responses.

■ **Ethylene (C_2H_4):**

- ✓ A gaseous hormone produced in ripening fruits, aging leaves and flowers, and in response to stress.
- ✓ Promotes fruit ripening.
- ✓ Induces leaf abscission (shedding).
- ✓ Inhibits stem and root elongation.
- ✓ Plays a role in the triple response in seedlings (slowing of stem elongation, thickening of stem, and horizontal growth).

g) Concept of Growth and Development in Plants:

Understanding plant growth and development is essential for:

- ✓ **Agriculture and Horticulture:** Optimizing crop yields, controlling flowering and fruiting, and developing better cultivation practices.

- ✓ **Botany and Plant Science:** Understanding the fundamental processes of plant life and evolution.
- ✓ **Environmental Science:** Comprehending plant responses to environmental changes and their role in ecosystems.
- ✓ **Biotechnology:** Manipulating plant growth and development for various applications.

2.6 Microorganisms

a) Microorganisms that Affect Human Beings:

Various microorganisms can cause diseases (infections) in humans. These include:

- **Bacteria:** Unicellular prokaryotic organisms. Examples of pathogenic bacteria include:
 - ✓ *Streptococcus pneumoniae* (pneumonia, meningitis)
 - ✓ *Mycobacterium tuberculosis* (tuberculosis)
 - ✓ *Salmonella typhi* (typhoid fever)
 - ✓ *Escherichia coli* (certain strains cause food poisoning, urinary tract infections)
 - ✓ *Staphylococcus aureus* (skin infections, food poisoning)
 - ✓ *Vibrio cholerae* (cholera)
- **Fungi:** Eukaryotic organisms that can be unicellular (yeasts) or multicellular (molds, mushrooms). Examples of pathogenic fungi include:
 - ✓ *Candida albicans* (thrush, yeast infections)
 - ✓ *Dermatophytes* (cause skin infections like athlete's foot, ringworm)
 - ✓ *Aspergillus* species (aspergillosis, respiratory infections)
 - ✓ *Cryptococcus neoformans* (cryptococcosis, meningitis in immunocompromised individuals)
- **Viruses:** Acellular infectious agents that consist of genetic material (DNA or RNA) enclosed in a protein coat (capsid). They require a host cell to replicate. Examples of pathogenic viruses include:
 - ✓ Human Immunodeficiency Virus (HIV) (AIDS)
 - ✓ Influenza virus (flu)
 - ✓ SARS-CoV-2 (COVID-19)
 - ✓ Hepatitis viruses (hepatitis A, B, C)
 - ✓ Measles virus (measles)
 - ✓ Human Papillomavirus (HPV) (warts, cervical cancer)
- **Protozoa (Note: Not explicitly in sub-strand title but important):** Unicellular eukaryotic organisms. Examples of pathogenic protozoa include:
 - ✓ *Plasmodium* species (malaria)
 - ✓ *Entamoeba histolytica* (amoebic dysentery)
 - ✓ *Giardia lamblia* (giardiasis)
 - ✓ *Trypanosoma brucei* (sleeping sickness)

b) Modes of Transmission of Microorganisms in Human Beings:

Microorganisms can spread from a source (infected person, animal, environment) to a susceptible host through various routes:

Download this and other FREE revision materials from <https://teacher.co.ke/notes>

- ❖ **Direct Contact:** Transmission occurs through physical contact between an infected person and a susceptible host. This can include:
 - ✓ **Person-to-person:** Touching, kissing, sexual contact (e.g., STIs like HIV, herpes, gonorrhea).
 - ✓ **Contact with body fluids:** Blood, saliva, mucus (e.g., Ebola, some respiratory infections).
 - ✓ **Vertical transmission:** From mother to child during pregnancy, childbirth, or breastfeeding (e.g., HIV, rubella).
- ❖ **Indirect Contact:** Transmission occurs when a susceptible host comes into contact with a contaminated intermediate object (fomite). Examples include:
 - ✓ **Contaminated surfaces:** Door handles, keyboards, toys (e.g., common cold, norovirus).
 - ✓ **Contaminated food and water:** Improperly cooked food, untreated water (e.g., Salmonella, E. coli, cholera, hepatitis A).
 - ✓ **Contaminated medical equipment:** Unsterilized needles, surgical instruments (e.g., hepatitis B, HIV).
- ❖ **Droplet Transmission:** Transmission occurs through respiratory droplets produced when an infected person coughs, sneezes, talks, or sings. These droplets can travel short distances (usually within 1 meter) and directly infect the mucous membranes of the nose, mouth, or eyes of a nearby susceptible person (e.g., influenza, common cold, measles, COVID-19).
- ❖ **Airborne Transmission:** Transmission occurs through smaller respiratory particles (aerosols) that can remain suspended in the air for longer periods and travel greater distances. These particles can be inhaled by susceptible individuals (e.g., tuberculosis, measles, chickenpox).
- ❖ **Vector Transmission:** Transmission occurs through a living organism (vector), usually an arthropod (insect, tick, mosquito), that carries the pathogen from an infected host to a susceptible host.
 - ✓ **Mechanical vector:** The vector physically carries the pathogen on its body (e.g., flies carrying bacteria from feces to food).
 - ✓ **Biological vector:** The pathogen undergoes part of its life cycle within the vector (e.g., *Plasmodium* in mosquitoes causing malaria, viruses in ticks causing Lyme disease).
- ❖ **Fecal-Oral Transmission:** Transmission occurs when fecal particles from an infected person are ingested by a susceptible person, often through contaminated food or water due to poor hygiene (e.g., cholera, typhoid fever, hepatitis A, polio).

c) Types of Infections Caused by Microorganisms in Human Beings:

Infections can be categorized based on the type of microorganism causing them and the location in the body:

- **Bacterial Infections:** Examples include pneumonia (lungs), tuberculosis (lungs), typhoid fever (intestines, bloodstream), urinary tract infections (urinary system), skin infections (skin), cholera (intestines).

- **Fungal Infections (Mycoses):** Can be superficial (affecting skin, hair, nails - e.g., athlete's foot, ringworm), cutaneous (affecting deeper layers of skin), subcutaneous (beneath the skin), or systemic (affecting internal organs - e.g., aspergillosis, cryptococcosis).
- **Viral Infections:** Examples include influenza (respiratory system), HIV (immune system), hepatitis (liver), measles (respiratory system, skin), warts (skin), COVID-19 (respiratory system, other organs).
- **Protozoan Infections (Note: For completeness):** Examples include malaria (blood, liver), amoebic dysentery (intestines), giardiasis (intestines), sleeping sickness (blood, nervous system).

Infections can also be described based on their:

- ✓ **Location:** Localized (confined to a specific area) or systemic (spread throughout the body).
- ✓ **Duration:** Acute (short-term, rapid onset) or chronic (long-term, persistent).
- ✓ **Severity:** Mild, moderate, or severe.
- ✓ **Origin:** Community-acquired (contracted outside a healthcare setting) or healthcare-associated (nosocomial) (contracted in a healthcare setting).
- ✓ **Type of pathogen:** Single-agent or mixed infection.

d) Methods of Control and Prevention of Infections Caused by Microorganisms:

Controlling and preventing the spread of microorganisms involves targeting their modes of transmission:

- **Hygiene Practices:**
 - ✓ **Handwashing:** Frequent and thorough handwashing with soap and water or using alcohol-based hand sanitizers is crucial for removing microorganisms from hands, interrupting direct and indirect contact transmission, and preventing fecal-oral transmission.
 - ✓ **Respiratory Hygiene:** Covering the mouth and nose when coughing or sneezing (using a tissue or elbow) helps prevent droplet and airborne transmission. Proper disposal of tissues is important.
 - ✓ **Food Safety:** Proper handling, cooking, and storage of food prevent foodborne illnesses caused by bacteria, viruses, and protozoa. This includes cooking food to safe temperatures, refrigerating perishable foods promptly, and preventing cross-contamination.
 - ✓ **Water Sanitation:** Ensuring access to clean and safe drinking water through treatment and proper storage prevents waterborne diseases.
 - ✓ **Personal Hygiene:** Maintaining cleanliness of the body, including showering, brushing teeth, and keeping nails short, reduces the risk of infections.
- **Environmental Sanitation:**
 - ✓ **Waste Management:** Proper collection and disposal of waste prevent the breeding of vectors and the spread of pathogens.
 - ✓ **Sewage Treatment:** Effective treatment of sewage prevents the contamination of water sources.

- ✓ **Disinfection and Sterilization:** Cleaning and disinfecting surfaces and sterilizing medical equipment kill or remove microorganisms, reducing indirect contact transmission.
- ✓ **Vector Control:** Measures to control populations of disease vectors (e.g., mosquitoes, flies, ticks) through insecticide spraying, eliminating breeding sites, and using personal protective measures like insect repellents and bed nets.
- **Public Health Measures:**
 - ✓ **Vaccination:** Immunization programs help build herd immunity and protect individuals against specific viral and bacterial diseases.
 - ✓ **Surveillance and Monitoring:** Tracking the occurrence and spread of infectious diseases allows for early detection and implementation of control measures.
 - ✓ **Quarantine and Isolation:** Separating infected individuals from susceptible populations can prevent further transmission.
 - ✓ **Health Education:** Raising awareness about modes of transmission and preventive measures empowers individuals to protect themselves and others.
- **Antimicrobial Agents:**
 - ✓ **Antibiotics:** Drugs used to treat bacterial infections. Proper use is essential to prevent antibiotic resistance.
 - ✓ **Antifungals:** Drugs used to treat fungal infections.
 - ✓ **Antivirals:** Drugs used to treat viral infections (often specific to certain viruses).
 - ✓ **Antiprotozoals:** Drugs used to treat protozoan infections.
 - ✓ **Judicious use of antimicrobials is crucial to prevent the development of drug-resistant microorganisms.**

e) Economic Importance of Microorganisms:

Microorganisms have profound and diverse economic impacts, both positive and negative:

- **Beneficial Economic Importance:**
 - ✓ **Food Industry:**
 - **Fermentation:** Production of yogurt, cheese, sauerkraut, kimchi, vinegar, and other fermented foods relies on the metabolic activities of bacteria and fungi.
 - **Baking:** Yeast fermentation produces carbon dioxide that makes bread rise.
 - ✓ **Beverage Industry:** Yeast fermentation is used in the production of alcoholic beverages like beer and wine.
 - ✓ **Pharmaceutical Industry:**
 - **Antibiotics:** Many antibiotics are produced by bacteria and fungi (e.g., penicillin from *Penicillium*).
 - **Vaccines:** Some vaccines are produced using inactivated or weakened microorganisms or their components.
 - **Insulin and other therapeutic proteins:** Genetically engineered microorganisms are used to produce these important drugs.
 - ✓ **Agriculture:**

- **Nitrogen Fixation:** Certain bacteria in the soil and in root nodules of legumes convert atmospheric nitrogen into forms usable by plants, reducing the need for synthetic fertilizers.
- **Decomposition:** Saprophytic bacteria and fungi break down organic matter, recycling nutrients in the soil.
- **Biopesticides:** Some microorganisms can be used to control agricultural pests.
- ✓ **Biotechnology:**
 - **Genetic Engineering:** Microorganisms are essential tools in genetic engineering for producing various products and studying gene function.
 - **Bioremediation:** Microorganisms can be used to clean up pollutants in the environment (e.g., oil spills, industrial waste).
 - **Biofuels:** Some microorganisms can produce biofuels like ethanol and methane.
- ✓ **Industrial Processes:** Production of enzymes, vitamins, and other industrial chemicals can involve the use of microorganisms.
- **Detrimental Economic Importance:**
 - ✓ **Spoilage of Food:** Microbial growth can lead to the spoilage of food, resulting in economic losses for producers and consumers.
 - ✓ **Diseases in Humans and Animals:** Infectious diseases caused by microorganisms can lead to healthcare costs, loss of productivity, and mortality, impacting the economy.
 - ✓ **Diseases in Plants:** Plant pathogens (bacteria, fungi, viruses) can cause significant crop losses, affecting agricultural productivity and food security.
 - ✓ **Damage to Materials:** Some microorganisms can degrade materials like wood, textiles, and paper, leading to economic damage.
 - ✓ **Water Contamination:** Microbial contamination of water sources can lead to waterborne diseases and the need for costly water treatment.

f) Effect of Microorganisms in Day-to-Day Life:

Microorganisms have a pervasive and often unseen influence on our daily lives:

- **Health:** They are responsible for many infectious diseases, but also play crucial roles in our gut microbiome, aiding digestion and influencing our immune system.
- **Food:** They are essential for the production of many foods we consume and can also cause food spoilage.
- **Environment:** They are vital for nutrient cycling, decomposition, and maintaining the balance of ecosystems. They can also be used for bioremediation to clean up pollution.
- **Industry:** They are used in various industrial processes, from producing pharmaceuticals to biofuels.

STRAND 3.0: MATTER AND CHEMICAL REACTIONS

Sub-Strand 3.1: The Periodic Table

- ❖ **The periodic table** is a tabular arrangement of chemical elements, ordered by their atomic number (number of protons in the nucleus), electron configuration, and recurring chemical properties.
- ❖ The arrangement shows periodic trends, and elements with similar behavior fall within the same group (column).

H 1							
Li 2,1	Be 2,2	B 2,3	C 2,4	N 2,5	O 2,6	F 2,7	He 2
Na 2,8,1	Mg 2,8,2	Al 2,8,3	Si 2,8,4	P 2,8,5	S 2,8,6	Cl 2,8,7	Ne 2,8
K 2,8,8,1	Ca 2,8,8,2						Ar 2,8,8

a) Electron Arrangement to Identify Period and Group:

The electron arrangement (electron configuration) of an atom determines its chemical properties and its position in the periodic table.

- **Period:** The period number corresponds to the highest principal energy level (electron shell) occupied by electrons in an atom of the element. For example:
 - ✓ Elements in Period 1 have electrons in the first energy level ($n=1$).
 - ✓ Elements in Period 2 have electrons in the first and second energy levels ($n=1, 2$), with the outermost electrons in the second energy level.
 - ✓ For the first 20 elements:
- **Period 1:**

Hydrogen (H: 1), Helium (He: 2)

▪ **Period 2:**

Lithium (Li: 2,1), Beryllium (Be: 2,2), Boron (B: 2,3), Carbon (C: 2,4), Nitrogen (N: 2,5), Oxygen (O: 2,6), Fluorine (F: 2,7), Neon (Ne: 2,8)

- **Period 3:**

Sodium (Na: 2,8,1), Magnesium (Mg: 2,8,2), Aluminum (Al: 2,8,3), Silicon (Si: 2,8,4), Phosphorus (P: 2,8,5), Sulfur (S: 2,8,6), Chlorine (Cl: 2,8,7), Argon (Ar: 2,8,8)

- **Period 4** (starts beyond the first 20):

Potassium (K: 2,8,8,1), Calcium (Ca: 2,8,8,2)

- **Group:** The group number (for main group elements) is related to the number of valence electrons (electrons in the outermost energy level) of an atom of the element.

- ✓ Group 1 (Alkali Metals): 1 valence electron (e.g., Li: 2,1; Na: 2,8,1)
- ✓ Group 2 (Alkaline Earth Metals): 2 valence electrons (e.g., Be: 2,2; Mg: 2,8,2)
- ✓ Group 13 (Boron Group): 3 valence electrons (e.g., B: 2,3; Al: 2,8,3)
- ✓ Group 14 (Carbon Group): 4 valence electrons (e.g., C: 2,4; Si: 2,8,4)
- ✓ Group 15 (Nitrogen Group): 5 valence electrons (e.g., N: 2,5; P: 2,8,5)
- ✓ Group 16 (Oxygen Group/Chalcogens): 6 valence electrons (e.g., O: 2,6; S: 2,8,6)
- ✓ Group 17 (Halogens): 7 valence electrons (e.g., F: 2,7; Cl: 2,8,7)
- ✓ Group 18 (Noble Gases): 8 valence electrons (2 for Helium) (e.g., He: 2; Ne: 2,8; Ar: 2,8,8)

b) Classification of Elements into Groups and Periods:

The periodic table is organized into horizontal rows called **periods** and vertical columns called **groups**.

- **Periods:** There are 7 periods in the modern periodic table. The period number indicates the principal energy level of the valence electrons.
- **Groups:** There are 18 groups in the modern periodic table. Elements within the same group have similar chemical properties because they have the same number of valence electrons.
 - ✓ **Main Group Elements (s-block and p-block):** Groups 1, 2, and 13-18. These are the elements we primarily focus on with the first 20 elements.
 - ✓ **Transition Metals (d-block):** Groups 3-12.
 - ✓ **Lanthanides and Actinides (f-block):** Usually placed below the main table.

For the first 20 elements:

- **Period 1:** H (Group 1), He (Group 18)
- **Period 2:** Li (Group 1), Be (Group 2), B (Group 13), C (Group 14), N (Group 15), O (Group 16), F (Group 17), Ne (Group 18)
- **Period 3:** Na (Group 1), Mg (Group 2), Al (Group 13), Si (Group 14), P (Group 15), S (Group 16), Cl (Group 17), Ar (Group 18)
- **Period 4:** K (Group 1), Ca (Group 2)

c) Stability and Electron Affinity of Atoms:

- **Stability:** Atoms tend to gain, lose, or share electrons to achieve a stable electron configuration, usually resembling that of the noble gases (Group 18). Noble gases have a full outer shell of electrons (octet rule, except for Helium which has a duet of 2 electrons), making them chemically inert (unreactive).
 - ✓ Atoms with incomplete outer shells are generally reactive.
 - ✓ Metals (typically on the left side of the periodic table) tend to lose electrons to form positive ions (cations) and achieve a noble gas configuration.
 - ✓ Non-metals (typically on the right side of the periodic table) tend to gain electrons to form negative ions (anions) and achieve a noble gas configuration.
 - ✓ Some non-metals can also share electrons to form covalent bonds and achieve a stable configuration.
- **Electron Affinity:** Electron affinity is the change in energy (in kJ/mol) of a neutral atom (in the gaseous phase) when an electron is added to the atom to form a negative ion. It is a measure of the atom's ability to accept an electron.
 - ✓ Generally, non-metals have higher electron affinities (more negative values, indicating more energy is released when an electron is gained) than metals because they are closer to achieving a stable noble gas configuration by gaining electrons.
 - ✓ Electron affinity generally increases across a period (from left to right) and decreases down a group (from top to bottom), although there are exceptions due to electron configurations and shielding effects.
 - ✓ Noble gases have very low (often positive) electron affinities because they already have a stable electron configuration and adding an electron requires energy.

d) Ion Formation for the First 20 Elements:

Atoms of the first 20 elements can form ions (charged species) by gaining or losing electrons to achieve a stable noble gas electron configuration.

Element	Atomic Number	Electron Arrangement	Tendency	Ion Formed	Electron Configuration of Ion	Noble Gas Configuration of
Lithium (Li)	3	2, 1	Lose 1 electron	Li^+	2	Helium (He: 2)
Beryllium (Be)	4	2, 2	Lose 2 electrons	Be^{2+}	2	Helium (He: 2)
Boron (B)	5	2, 3	Lose 3 electrons	B^{3+}	2	Helium (He: 2)
Carbon (C)	6	2, 4	Share electrons	(Forms covalent bonds)		Neon (Ne: 2,8)
Nitrogen (N)	7	2, 5	Gain 3 electrons	N^{3-}	2, 8	Neon (Ne: 2,8)
Oxygen (O)	8	2, 6	Gain 2	O^{2-}	2, 8	Neon (Ne: 2,8)

			electrons			
Fluorine (F)	9	2, 7	Gain 1 electron	F^-	2, 8	Neon (Ne: 2,8)
Neon (Ne)	10	2, 8	Stable	(No common ion)	2, 8	Neon (Ne: 2,8)
Sodium (Na)	11	2, 8, 1	Lose 1 electron	Na^+	2, 8	Neon (Ne: 2,8)
Magnesium (Mg)	12	2, 8, 2	Lose 2 electrons	Mg^{2+}	2, 8	Neon (Ne: 2,8)
Aluminum (Al)	13	2, 8, 3	Lose 3 electrons	Al^{3+}	2, 8	Neon (Ne: 2,8)
Silicon (Si)	14	2, 8, 4	Share electrons	(Forms covalent bonds)		Argon (Ar: 2,8,8)
Phosphorus (P)	15	2, 8, 5	Gain 3 electrons	P^{3-}	2, 8, 8	Argon (Ar: 2,8,8)
Sulfur (S)	16	2, 8, 6	Gain 2 electrons	S^{2-}	2, 8, 8	Argon (Ar: 2,8,8)
Chlorine (Cl)	17	2, 8, 7	Gain 1 electron	Cl^-	2, 8, 8	Argon (Ar: 2,8,8)
Argon (Ar)	18	2, 8, 8	Stable	(No common ion)	2, 8, 8	Argon (Ar: 2,8,8)
Potassium (K)	19	2, 8, 8, 1	Lose 1 electron	K^+	2, 8, 8	Argon (Ar: 2,8,8)
Calcium (Ca)	20	2, 8, 8, 2	Lose 2 electrons	Ca^{2+}	2, 8, 8	Argon (Ar: 2,8,8)

Exercise activity for learners to try out

Draw Dot (.) and Cross (x) diagrams for Ion Formation

1. **Sodium (Na) to Sodium Ion (Na^+):**
2. **Chlorine (Cl) to Chloride Ion (Cl^-):**

e) Chemical Formulae of Compounds Using Valencies of Elements and Radicals:

Valency: The valency of an element is the number of electrons an atom of the element loses, gains, or shares to form a chemical bond.

Oxidation Number: The oxidation number is the hypothetical charge that an atom would have if all bonds to atoms of different elements were 100% ionic.

Common Radicals (Polyatomic Ions): Groups of atoms that carry a charge and behave as a single unit in chemical reactions.

Radical Name	Formula	Valency	Oxidation Number of Radical
Ammonium ion	NH_4^+	1	+1
Sulphate ion	SO_4^{2-}	2	-2
Nitrate ion	NO_3^-	1	-1
Hydroxide ion	OH^-	1	-1
Carbonate ion	CO_3^{2-}	2	-2
Phosphate ion	PO_4^{3-}	3	-3
Hydrogen carbonate ion	HCO_3^-	1	-1
Sulphite ion	SO_3^{2-}	2	-2
Nitrite ion	NO_2^-	1	-1

Formulating Chemical Formulae (Criss-Cross Method):

1. Write the symbols of the elements or radicals.
2. Write their valencies (ignoring the sign of the oxidation number) below the symbols.
3. Criss-cross the valencies to become the subscripts for the other symbol.
4. Simplify the subscripts if possible.
5. If the radical has a subscript greater than 1, enclose it in brackets.

Examples:

- a) **Sodium Chloride:** $\text{Na}^1 \text{Cl}^1 \rightarrow \text{NaCl}$
- b) **Magnesium Oxide:** $\text{Mg}^2 \text{O}^2 \rightarrow \text{MgO}$ (simplified from Mg_2O_2)
- c) **Aluminum Oxide:** $\text{Al}^3 \text{O}^2 \rightarrow \text{Al}_2\text{O}_3$
- d) **Calcium Hydroxide:** $\text{Ca}^2 \text{OH}^1 \rightarrow \text{Ca}(\text{OH})_2$ (Hydroxide in brackets because subscript is 2)
- e) **Ammonium Sulphate:** $\text{NH}_4^1 \text{SO}_4^2 \rightarrow (\text{NH}_4)_2\text{SO}_4$

(Ammonium in brackets because subscript is 2)

Writing Chemical Equations:

Chemical equations represent chemical reactions using symbols and formulae.

- ❖ **Reactants:** Substances that react, written on the left side of the arrow.
- ❖ **Products:** Substances formed, written on the right side of the arrow.
- ❖ **Arrow (\rightarrow):** Indicates the direction of the reaction ("yields" or "forms").
- ❖ **Balancing Equations:** The number of atoms of each element must be the same on both sides of the equation (law of conservation of mass). This is done by adding coefficients in front of the formulae.

Example (Unbalanced): $\text{H}_2 + \text{O}_2 \rightarrow \text{H}_2\text{O}$

Example (Balanced): $2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}$

f) Importance of Atomic Structure in the Development of the Periodic Table:

The development of the periodic table is fundamentally based on the understanding of the structure of the atom, particularly the arrangement of electrons.

- ✓ **Mendeleev's Early Table:** While Mendeleev initially arranged elements by atomic mass, he recognized recurring patterns in their chemical properties. These patterns are now understood to be due to the similar number of valence electrons in elements within the same group.
- ✓ **Modern Periodic Table (Based on Atomic Number):** Moseley's work showed that the properties of elements are more accurately periodic functions of their atomic number (number of protons), which directly determines the number of electrons in a neutral atom and hence its electron configuration.
- ✓ **Electron Configuration as the Basis:** The arrangement of elements in the modern periodic table directly reflects the electron configurations of their atoms. Elements in the same group have similar valence electron configurations, leading to their similar chemical behavior. The period number indicates the highest energy level occupied by electrons.
- ✓ **Predicting Properties:** The periodic table allows us to predict the chemical properties of elements based on their

Sub-Strand 3.2: Chemical Families

- ❖ The periodic table organizes elements with similar chemical properties into vertical columns called groups or families.
- ❖ These families exhibit trends in their physical and chemical behavior due to their similar valence electron configurations.

a) Chemical Families in the Periodic Table:

The major chemical families include:

- ✚ **Group 1: Alkali Metals:** Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs), Francium (Fr).
- ✚ **Group 2: Alkaline Earth Metals:** Beryllium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), Radium (Ra).
- ✚ **Group 17: Halogens:** Fluorine (F), Chlorine (Cl), Bromine (Br), Iodine (I), Astatine (At).
- ✚ **Group 18: Noble Gases:** Helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Xe), Radon (Rn).
- ✚ **Transition Metals:** Located in the d-block (Groups 3-12) of the periodic table. Examples include Copper (Cu), Iron (Fe), Zinc (Zn), Lead (Pb) (though Lead is technically a post-transition metal, it's often discussed with them due to its d-block proximity and some shared characteristics).

b) Chemical Families (First 20 and Selected Transition Metals):

- ❖ **Alkali Metals (Group 1):** Lithium (Li), Sodium (Na), Potassium (K)
- ❖ **Alkaline Earth Metals (Group 2):** Beryllium (Be), Magnesium (Mg), Calcium (Ca)
- ❖ **Halogens (Group 17):** Fluorine (F), Chlorine (Cl)
- ❖ **Noble Gases (Group 18):** Helium (He), Neon (Ne), Argon (Ar)
- ❖ **Transition Metals (d-block):** Copper (Cu), Iron (Fe), Zinc (Zn)
- ❖ **Other Main Group Elements:**
 - ✓ Group 13: Boron (B), Aluminum (Al)
 - ✓ Group 14: Carbon (C), Silicon (Si)
 - ✓ Group 15: Nitrogen (N), Phosphorus (P)
 - ✓ Group 16: Oxygen (O), Sulfur (S)
- ❖ **Post-Transition Metal (often discussed with Transition Metals):** Lead (Pb) (Group 14)

c) Physical and Chemical Properties of Selected Elements:

- **Alkali Metals (e.g., Sodium (Na)):**
 - ✓ **Physical:** Soft, silvery-white metals; low densities; low melting and boiling points; good conductors of heat and electricity.
 - ✓ **Chemical:** Highly reactive due to having only one valence electron (readily lose it to form +1 ions); react vigorously with water to produce hydrogen gas and alkaline hydroxides; react with halogens to form ionic salts.
 - Example reaction with water: $2\text{Na(s)} + 2\text{H}_2\text{O(l)} \rightarrow 2\text{NaOH(aq)} + \text{H}_2\text{(g)}$
 - Example reaction with chlorine: $2\text{Na(s)} + \text{Cl}_2\text{(g)} \rightarrow 2\text{NaCl(s)}$
- **Alkaline Earth Metals (e.g., Magnesium (Mg)):**
 - ✓ **Physical:** Harder and denser than alkali metals; higher melting and boiling points; silvery-white; good conductors of heat and electricity (but less reactive than alkali metals).
 - ✓ **Chemical:** Reactive due to having two valence electrons (readily lose them to form +2 ions); react with water (less vigorously than alkali metals, often requiring heating)

or steam); react with oxygen to form oxides; react with acids to produce hydrogen gas.

- Example reaction with oxygen: $2\text{Mg(s)} + \text{O}_2\text{(g)} \rightarrow 2\text{MgO(s)}$
- Example reaction with dilute acid: $\text{Mg(s)} + 2\text{HCl(aq)} \rightarrow \text{MgCl}_2\text{(aq)} + \text{H}_2\text{(g)}$

- **Halogens (e.g., Chlorine (Cl)):**

- ✓ **Physical:** Non-metals; exist as diatomic molecules (Cl_2); vary in state at room temperature (Fluorine and Chlorine are gases, Bromine is a liquid, Iodine is a solid); generally poor conductors of heat and electricity; often have pungent odors and are colored.
- ✓ **Chemical:** Highly reactive non-metals due to having seven valence electrons (readily gain one electron to form -1 ions); react with metals to form ionic salts; react with hydrogen to form hydrogen halides (acids in water).
 - Example reaction with sodium: $2\text{Na(s)} + \text{Cl}_2\text{(g)} \rightarrow 2\text{NaCl(s)}$
 - Example reaction with hydrogen: $\text{H}_2\text{(g)} + \text{Cl}_2\text{(g)} \rightarrow 2\text{HCl(g)}$

- **Noble Gases (e.g., Neon (Ne)):**

- ✓ **Physical:** Colorless, odorless gases; very low boiling points; poor conductors of heat and electricity.
- ✓ **Chemical:** Generally unreactive (inert) due to having a full outer shell of electrons (stable electron configuration). Helium has 2 valence electrons (a full first shell), while the rest have 8 (octet rule). Under extreme conditions, some heavier noble gases can form compounds with highly electronegative elements like fluorine and oxygen.

- **Transition Metals (e.g., Iron (Fe)):**

- ✓ **Physical:** Typically hard, dense metals with high melting and boiling points; good conductors of heat and electricity; often form colored compounds; can exhibit variable oxidation states.
- ✓ **Chemical:** Less reactive than alkali and alkaline earth metals; can form ions with different charges (variable valency) due to the involvement of d-electrons in bonding; many act as catalysts.
 - Example reaction with oxygen (rusting): $4\text{Fe(s)} + 3\text{O}_2\text{(g)} \rightarrow 2\text{Fe}_2\text{O}_3\text{(s)}$ (in the presence of water)

d) Unreactive Nature of the Noble Gases:

The unreactive nature (inertness) of the noble gases is due to their stable electron configurations. They have a full outer shell of valence electrons:

- **Helium (He):** Has 2 electrons in its first energy level ($1s^2$), which is a full shell for the first energy level (duet rule).
- **Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Xe), Radon (Rn):** Have 8 electrons in their outermost energy level (ns^2np^6), satisfying the octet rule.

This full outer shell makes it energetically unfavorable for noble gas atoms to gain, lose, or share electrons to form chemical bonds with other atoms. They have very low electron affinities (tend not to accept electrons) and high ionization energies (require a lot of energy to lose electrons). This stability explains why they exist as monatomic gases (single atoms) and form

very few compounds, mostly under extreme laboratory conditions with highly electronegative elements.

e) Uses of Elements of the Periodic Table:

The properties of elements make them suitable for various applications:

- ✓ **Alkali Metals (e.g., Sodium):** Used in street lighting (sodium vapor lamps), as a heat transfer medium in nuclear reactors, and in the production of various chemical compounds (e.g., sodium hydroxide, sodium chloride).
- ✓ **Alkaline Earth Metals (e.g., Magnesium, Calcium):** Magnesium is used in lightweight alloys (aircraft parts), flares, and as a dietary supplement. Calcium is essential for bones and teeth, and its compounds are used in cement and plaster.
- ✓ **Halogens (e.g., Chlorine, Iodine):** Chlorine is used in water treatment, disinfectants, and the production of plastics (PVC). Iodine is used as an antiseptic and is essential for thyroid function. Fluorine compounds are used in toothpaste and refrigerants.
- ✓ **Noble Gases (e.g., Helium, Neon, Argon):** Helium is used in balloons and as a coolant in MRI machines. Neon is used in advertising signs. Argon is used in incandescent light bulbs to prevent filament oxidation and as an inert atmosphere in welding.
- ✓ **Transition Metals (e.g., Iron, Copper, Zinc, Lead):** Iron is the main component of steel used in construction and manufacturing. Copper is an excellent electrical conductor used in wiring and electronics. Zinc is used in galvanizing steel to prevent corrosion and in batteries. Lead was historically used in pipes and paints (now restricted due to toxicity) and is still used in car batteries and radiation shielding.
- ✓ **Other Elements:**
 - ✓ **Aluminum:** Lightweight and strong, used in aircraft, cans, and construction.
 - ✓ **Silicon:** Semiconductor used in electronics (computer chips, solar cells).
 - ✓ **Carbon:** Forms the basis of organic chemistry and is used in fuels, plastics, and as graphite (lubricant, pencil leads) and diamond (jewelry, cutting tools).
 - ✓ **Oxygen:** Essential for respiration and combustion; used in welding and medical applications.
 - ✓ **Nitrogen:** Major component of air; used in fertilizers and the production of ammonia.

f) Uses of the Elements of the Periodic Table in Day-to-Day Life:

Elements and their compounds are integral to our daily lives in numerous ways:

- ✓ **Construction:** Metals like iron, aluminum, and calcium compounds (cement) are essential for buildings and infrastructure.
- ✓ **Transportation:** Metals like aluminum and iron alloys are used in vehicles. Fuels derived from carbon compounds power them.
- ✓ **Electronics:** Silicon, copper, and other metals are crucial for computers, smartphones, and other electronic devices.
- ✓ **Health:** Elements like calcium, iron, and iodine are essential nutrients. Compounds are used in medicines and medical imaging.

- ✓ **Home:** Elements and their compounds are found in cooking utensils (aluminum, stainless steel), cleaning products (chlorine compounds), lighting (noble gases, tungsten), and many other household items.
- ✓ **Energy:** Elements like carbon (in fuels), uranium (in nuclear power), and silicon (in solar cells) are vital for energy production.
- ✓ **Agriculture:** Nitrogen, phosphorus, and potassium compounds are used as fertilizers.

Sub-Strand 3.3: Chemical Bonding

- ❖ Chemical bonding is the attractive force that holds atoms or ions together to form molecules and ionic compounds.
- ❖ The type of bond formed depends on the electronic structure of the atoms involved, particularly their valence electrons.

a) Types of Bonds Formed by Elements:

Elements can form different types of bonds depending on their electronegativity and the number of valence electrons they possess. The main types of chemical bonds are:

- ✓ **Ionic Bonds:** Formed by the electrostatic attraction between oppositely charged ions (cations and anions). This typically occurs between metals (low electronegativity, tend to lose electrons) and non-metals (high electronegativity, tend to gain electrons).
- ✓ **Covalent Bonds:** Formed by the sharing of one or more pairs of electrons between atoms. This typically occurs between non-metals.
 - ❖ **Non-polar Covalent Bonds:** Electrons are shared equally between atoms with similar electronegativity.
 - ❖ **Polar Covalent Bonds:** Electrons are shared unequally between atoms with different electronegativity, resulting in partial charges (δ^+ and δ^-) on the atoms.
 - ❖ **Dative Covalent Bonds (Coordinate Bonds):** One atom provides both electrons for the shared pair.
- ✓ **Metallic Bonds:** Found in metals, where valence electrons are delocalized and shared among a lattice of metal ions, forming a "sea" of electrons.
- ✓ **Hydrogen Bonds:** A special type of intermolecular force (weak bond between molecules) that occurs when a hydrogen atom bonded to a highly electronegative atom (like oxygen, nitrogen, or fluorine) is attracted to another electronegative atom in a different molecule. These are not true chemical bonds holding atoms within a molecule but are significant in determining the properties of substances like water.
- ✓ **Van der Waals Forces:** Weak intermolecular forces arising from temporary fluctuations in electron distribution around atoms and molecules. These include London dispersion forces, dipole-dipole interactions, and dipole-induced dipole interactions.

b) Chemical Bonding in Common Compounds:

- ❖ **Water (H_2O):**
- ✓ Oxygen (2,6) needs 2 more electrons to achieve a stable octet.
- ✓ Hydrogen (1) needs 1 more electron to achieve a stable duet (like Helium).

- ✓ Oxygen shares one electron with each of the two hydrogen atoms, forming two **polar covalent bonds**.
- ✓ Oxygen is more electronegative than hydrogen, so the shared electrons are pulled closer to the oxygen atom, giving it a partial negative charge (δ^-) and the hydrogen atoms partial positive charges (δ^+).
- ❖ **Sodium Chloride (NaCl):**
- ✓ Sodium (2,8,1) loses its one valence electron to achieve a stable octet, forming a sodium ion (Na^+) with a +1 charge.
- ✓ Chlorine (2,8,7) gains one electron to achieve a stable octet, forming a chloride ion (Cl^-) with a -1 charge.
- ✓ The oppositely charged ions (Na^+ and Cl^-) are strongly attracted to each other by **electrostatic forces**, forming an **ionic bond**.
- ❖ **Hydrogen (H_2):**
- ✓ Each hydrogen atom (1) needs one more electron to achieve a stable duet.
- ✓ Two hydrogen atoms share their electrons, forming a **non-polar covalent bond**. The electrons are shared equally because both atoms have the same electronegativity.
- ✓ Dot and Cross Diagram:
- ✓ $\text{H}\bullet + \bullet\text{H} \rightarrow \text{H} \times \text{H}$
- ❖ **Diamond (C):**
- ✓ Each carbon atom (2,4) has 4 valence electrons and forms **four strong covalent bonds** with four other carbon atoms in a tetrahedral arrangement.
- ✓ This results in a giant **tetrahedral lattice structure**, where all carbon atoms are interconnected by strong covalent bonds.
- ❖ **Graphite (C):**
- ✓ Each carbon atom (2,4) forms **three covalent bonds** with three other carbon atoms in a hexagonal planar arrangement.
- ✓ This forms layers of interconnected hexagons. Each carbon atom has one delocalized electron (not involved in the sigma bonds) that contributes to electrical conductivity.
- ✓ The layers are held together by weak **Van der Waals forces**.

c) Structures of Elements and Compounds Formed by Bonding:

The type of bonding significantly influences the structure of elements and compounds:

- **Giant Ionic Structures (e.g., Sodium Chloride):** Formed by the strong electrostatic attraction between a large number of oppositely charged ions arranged in a regular crystal lattice.
- **Simple Molecular Structures (e.g., Water, Hydrogen):** Formed by a small number of atoms joined by covalent bonds to form discrete molecules. These molecules are held together by weak intermolecular forces (e.g., hydrogen bonds in water, Van der Waals forces in hydrogen).
- **Giant Covalent Structures (Giant Atomic Structures) (e.g., Diamond, Graphite, Silicon Dioxide):** Formed by a large number of atoms joined by strong covalent bonds in a continuous network or lattice.

- **Giant Metallic Structures (e.g., Aluminum):** Formed by a regular lattice of positive metal ions surrounded by a "sea" of delocalized valence electrons. The attraction between the positive ions and the delocalized electrons constitutes the metallic bond.

d) Relationship between Bond Types and Physical Properties:

The type of bonding and the resulting structure have a direct impact on the physical properties of elements and compounds:

- **Ionic Compounds (Giant Ionic Structures):**
 - ✓ **High melting and boiling points:** Strong electrostatic forces between ions require a large amount of energy to overcome.
 - ✓ **Hard and brittle:** Strong forces hold the lattice together, but displacement of layers leads to repulsion between similarly charged ions, causing brittleness.
 - ✓ **Conduct electricity when molten or dissolved in water:** Ions are free to move and carry charge.
 - ✓ **Often soluble in polar solvents (like water):** Polar water molecules can interact with and separate the ions.
- **Simple Molecular Substances:**
 - ✓ **Low melting and boiling points:** Weak intermolecular forces between molecules require little energy to overcome.
 - ✓ **Soft:** Weak forces between molecules allow them to move past each other easily.
 - ✓ **Poor conductors of electricity:** No free-moving charged particles (ions or delocalized electrons).
 - ✓ **Solubility varies:** Polar molecules tend to dissolve in polar solvents, and non-polar molecules in non-polar solvents.
- **Giant Covalent Structures (Giant Atomic Structures):**
 - ✓ **High melting and boiling points:** Strong covalent bonds throughout the structure require a large amount of energy to break.
 - ✓ **Hard (e.g., diamond):** Strong, rigid network of covalent bonds.
 - ✓ **Variable electrical conductivity:** Diamond is a poor conductor (no delocalized electrons), while graphite is a good conductor (delocalized electrons between layers).
 - ✓ **Insoluble in most solvents:** Strong covalent bonds are difficult to break by solvent molecules.
- **Metallic Substances (Giant Metallic Structures):**
 - ✓ **High melting and boiling points (generally):** Strong metallic bonds due to the attraction between positive ions and the sea of delocalized electrons (strength varies with the number of delocalized electrons and charge density).
 - ✓ **Malleable and ductile:** Layers of positive ions can slide over each other without breaking the bonds due to the non-directional nature of metallic bonding.
 - ✓ **Good conductors of electricity and heat:** Delocalized electrons are free to move and carry charge and thermal energy.
 - ✓ **Insoluble in most common solvents:** Metallic bonding is different from interactions with solvent molecules.

e) Appropriate Materials for Use Based on Their Bond Type and Structure:

The choice of materials for specific applications depends heavily on their physical properties, which are determined by their bond type and structure:

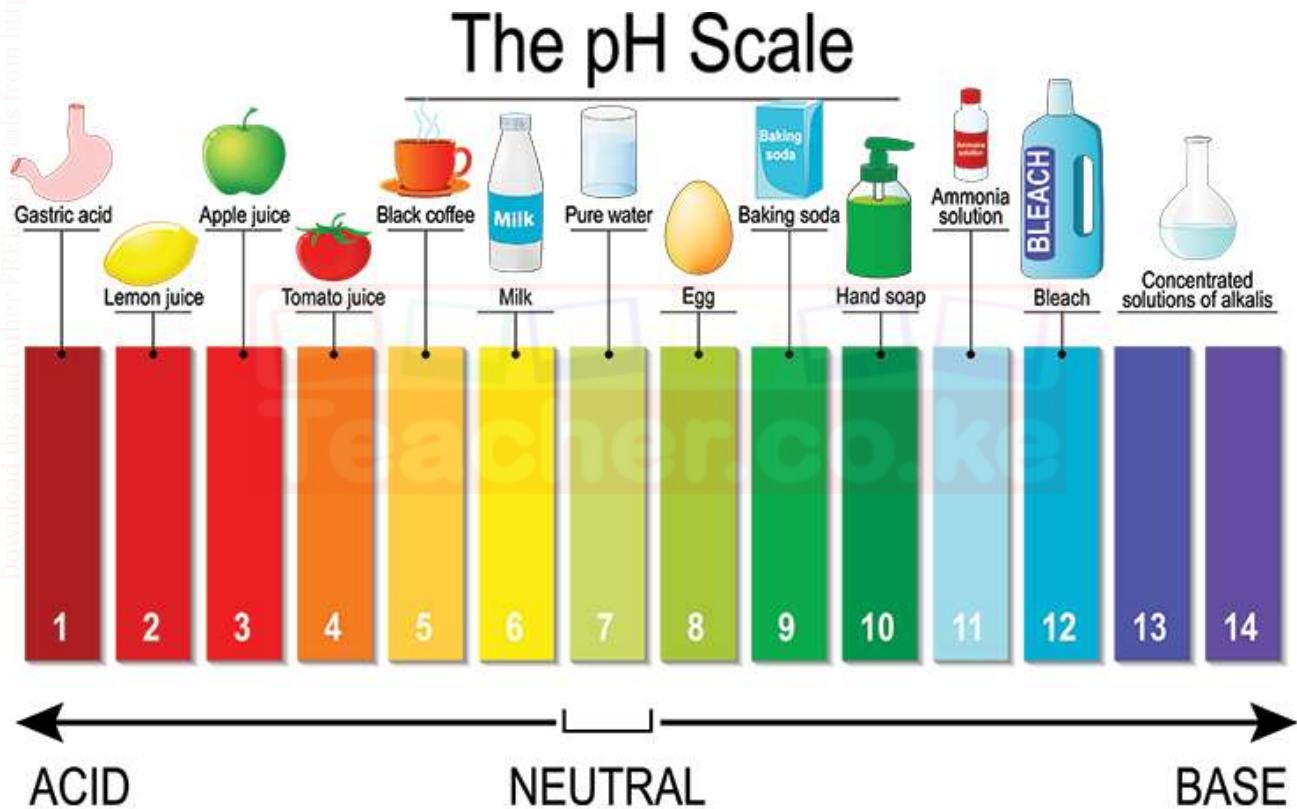
- ✓ **High Melting/Boiling Points:** Ionic compounds (e.g., refractory materials), giant covalent structures (e.g., furnace linings made of ceramics).
- ✓ **Electrical Conductivity:** Metals (e.g., copper for wiring), graphite (electrodes).
- ✓ **Insulation:** Simple molecular substances (e.g., plastics), giant covalent structures (e.g., some ceramics).
- ✓ **Strength and Hardness:** Giant covalent structures (e.g., diamond for cutting tools), metals (e.g., steel for construction).
- ✓ **Flexibility and Ductility:** Metals (e.g., aluminum for shaping), polymers (long-chain covalent molecules with weaker intermolecular forces).
- ✓ **Solubility:** Ionic compounds (e.g., salts dissolving in water), polar covalent molecules in polar solvents, non-polar covalent molecules in non-polar solvents (e.g., grease dissolving in organic solvents).

Examples:

- ✓ **Copper wires:** Metallic bonding allows for good electrical conductivity and ductility for drawing into wires.
- ✓ **Plastic containers:** Simple molecular structure with weak intermolecular forces allows for flexibility and can be molded into various shapes; covalent bonds within molecules provide strength.
- ✓ **Diamond drill bits:** Giant covalent structure with strong, rigid bonds makes diamond very hard and suitable for cutting.
- ✓ **Salt (NaCl) for seasoning:** Ionic compound that dissolves in water (a polar solvent), allowing for even distribution of flavor.

f) Appropriateness of Substances in Day-to-Day Life Based on Their Bond Types and Structures:

Our everyday lives are filled with materials whose suitability for their purpose is directly linked to their chemical bonding and resulting structures:


- ✓ **Water:** Polar covalent bonds and hydrogen bonding give it unique properties like its ability to dissolve many substances (essential for life and cleaning), its relatively high specific heat capacity (important for temperature regulation), and its anomalous expansion upon freezing (protecting aquatic life).
- ✓ **Metals in tools and structures:** Metallic bonding provides strength, malleability, ductility, and conductivity, making metals ideal for tools, construction materials, and electrical wiring.
- ✓ **Plastics and polymers:** Long chains of covalently bonded atoms with weaker intermolecular forces allow for flexibility, moldability, and insulation properties, leading to their use in packaging, clothing, and electronics.

- ✓ **Ceramics (e.g., clay products, porcelain):** Giant covalent structures provide hardness, high melting points, and insulation properties, making them suitable for pottery, bricks, and electrical insulators.
- ✓ **Fuels (e.g., hydrocarbons):** Non-polar covalent molecules with relatively weak intermolecular forces that are easily vaporized and combusted to release energy.

Sub-Strand 3.4: Acids, Bases and Salts

Acids, bases, and salts are important classes of chemical compounds with distinct properties and numerous applications.

a) Distinguish Acids and Bases Using the Universal Indicator and pH Chart:

- ✓ **Acids:** Substances that produce hydrogen ions (H^+) when dissolved in water (Arrhenius definition). They have a pH value less than 7. Strong acids completely ionize in water, producing a high concentration of H^+ ions (pH closer to 0). Weak acids only partially ionize (pH slightly less than 7).
- ✓ **Bases:** Substances that produce hydroxide ions (OH^-) when dissolved in water (Arrhenius definition). They have a pH value greater than 7. Strong bases completely dissociate in water, producing a high concentration of OH^- ions (pH closer to 14). Weak bases only partially react with water to produce OH^- ions (pH slightly greater than 7).
- ✓ **Universal Indicator:** A mixture of several indicators that changes color gradually over a wide range of pH values (typically 1 to 14). It can be in the form of a solution or paper.

- ✓ **pH Chart:** A chart that shows the different colors of the universal indicator at different pH values, allowing for the determination of the approximate pH of a solution.

Testing Substances: Learners should observe the color change of the universal indicator when added to or dipped into various substances and then compare the color to a pH chart to determine if the substance is acidic, basic, or neutral, and to estimate its strength (strong or weak).

b) Role of Acids and Bases in Biological Processes:

Acids and bases play crucial roles in maintaining life processes:

- ❖ **Digestion:**
 - ✓ **Stomach:** Hydrochloric acid (HCl), a strong acid produced by cells in the stomach lining, provides a highly acidic environment (pH 1.5-3.5) necessary for the activation of pepsin (an enzyme that digests proteins) and for killing ingested bacteria.
- ❖ **Respiration and Blood Buffering:**
 - ✓ **Carbon Dioxide Transport:** Carbon dioxide (CO₂) produced during respiration dissolves in blood to form carbonic acid (H₂CO₃), a weak acid.
 - ✓ **Blood pH Regulation:** The pH of blood is tightly regulated (around 7.35-7.45) by buffer systems, primarily the bicarbonate buffer system (H₂CO₃/HCO₃⁻). This system involves a weak acid (carbonic acid) and its conjugate base (bicarbonate ion) to neutralize small amounts of added acids or bases, maintaining a stable pH essential for enzyme function and other physiological processes.
- ❖ **Enzyme Activity:** Enzymes, biological catalysts, function optimally within specific pH ranges. Deviations from this optimal pH can alter the enzyme's structure and reduce or abolish its activity. Different enzymes in the body have different optimal pH values (e.g., pepsin in the acidic stomach, trypsin in the slightly alkaline small intestine).
- ❖ **Plant Growth:** Soil pH affects the availability of nutrients to plants. Some plants thrive in acidic soils, while others prefer alkaline or neutral conditions.
- ❖ **Cellular Processes:** Maintaining the correct pH within cells and organelles is crucial for various biochemical reactions and the proper functioning of cellular components.

c) Products of Chemical Reactions of Acids and Bases:

- ✚ **Reaction of Acids with Bases (Neutralization):**
 - ✓ Acid + Base → Salt + Water
 - ✓ Example: HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(l)
- ✚ **Reaction of Acids with Carbonates:**
 - ✓ Acid + Metal Carbonate → Salt + Water + Carbon Dioxide
 - ✓ Example: 2HCl(aq) + CaCO₃(s) → CaCl₂(aq) + H₂O(l) + CO₂(g)
 - ✓ Acid + Metal Hydrogen Carbonate → Salt + Water + Carbon Dioxide
 - ✓ Example: HCl(aq) + NaHCO₃(s) → NaCl(aq) + H₂O(l) + CO₂(g)
- ✚ **Reaction of Acids with Metals (Reactive Metals above Hydrogen in the reactivity series):**

- ✓ Acid + Metal → Salt + Hydrogen Gas
- ✓ Example: $\text{Mg(s)} + 2\text{HCl(aq)} \rightarrow \text{MgCl}_2\text{(aq)} + \text{H}_2\text{(g)}$

Reaction of Bases with Acids (Neutralization - same as above):

- ✓ Example: $\text{H}_2\text{SO}_4\text{(aq)} + 2\text{KOH(aq)} \rightarrow \text{K}_2\text{SO}_4\text{(aq)} + 2\text{H}_2\text{O(l)}$

Learners should be able to predict the salt formed based on the acid and base reactants (the cation of the base and the anion of the acid form the salt). They should also be able to identify the other products (water, carbon dioxide, hydrogen gas) in these reactions.

d) Classification of Salts According to Their Behaviour When Exposed to Air:

Salts can exhibit different behaviours when exposed to atmospheric moisture:

- ✓ **Hygroscopic Salts:** These salts absorb moisture from the air but do not dissolve in the absorbed water to form a solution. They become damp or sticky. Examples include anhydrous calcium chloride (CaCl_2) and anhydrous copper(II) sulfate (CuSO_4).
- ✓ **Deliquescent Salts:** These salts absorb a large amount of moisture from the air and dissolve in the absorbed water to form a saturated solution. Eventually, all the solid salt may disappear, forming a liquid solution. Examples include sodium hydroxide (NaOH), potassium hydroxide (KOH), and magnesium chloride (MgCl_2).
- ✓ **Efflorescent Salts:** These are hydrated salts (salts containing water of crystallization) that lose their water of crystallization to the atmosphere when exposed to dry air. They may appear to become powdery on the surface. Examples include hydrated sodium carbonate ($\text{Na}_2\text{CO}_3 \cdot 10\text{H}_2\text{O}$) and hydrated copper(II) sulfate ($\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$).

Learners should be able to observe these behaviours experimentally by leaving small samples of different salts exposed to the air for a period and noting any changes in their appearance or mass.

e) Applications of Salts in Real Life Situations:

Salts have a wide range of applications in various aspects of life:

- ✓ **Agriculture:**
 - ❖ **Fertilizers:** Nitrate salts (e.g., ammonium nitrate, potassium nitrate), phosphate salts (e.g., superphosphate), and potassium salts (e.g., potassium chloride) are essential components of fertilizers, providing nitrogen, phosphorus, and potassium needed for plant growth.
 - ❖ **Soil Amendment:** Calcium carbonate (limestone) is used to neutralize acidic soils.
- ✓ **Food Industry:**
 - ❖ **Seasoning:** Sodium chloride (table salt) is the most common seasoning.
 - ❖ **Preservatives:** Sodium benzoate and sodium nitrite are used to preserve food.
 - ❖ **Leavening Agents:** Sodium bicarbonate (baking soda) is used in baking to produce carbon dioxide, causing dough to rise.
 - ❖ **Nutritional Supplements:** Calcium salts, iron salts, and potassium salts are added to foods as supplements.

✓ **Medicine:**

- ❖ **Oral Rehydration Salts (ORS):** A mixture of salts and glucose used to treat dehydration caused by diarrhea.
- ❖ **Antacids:** Magnesium hydroxide and aluminum hydroxide are basic salts used to neutralize excess stomach acid.
- ❖ **Saline Solutions:** Sodium chloride solutions are used for intravenous drips and cleaning wounds.
- ❖ **Diagnostic Agents:** Barium sulfate is used as a contrast medium in X-rays.

✓ **Laundry and Cleaning:**

- ❖ **Washing Soda (Sodium Carbonate):** Used as a water softener and cleaning agent.
- ❖ **Bleaching Agents:** Sodium hypochlorite (a salt of hypochlorous acid) is used as a bleach.

✓ **Construction:**

- ❖ **Cement:** A complex mixture containing calcium silicate and calcium aluminate salts.
- ❖ **Plaster of Paris (Calcium Sulfate Hemihydrate):** Used for making casts and molds.

✓ **Industry:**

- ❖ **Manufacture of other chemicals:** Salts are used as raw materials in the production of acids, bases, and other compounds.
- ❖ **Electroplating:** Solutions of metal salts are used in electroplating processes.
- ❖ **Water Treatment:** Various salts are used in water purification.

f) Proper Usage of Salts in Day-to-Day Life:

While salts have many beneficial uses, their improper or excessive use can have negative consequences:

- ✓ **Health:** Excessive intake of sodium chloride can lead to high blood pressure and cardiovascular problems.
- ✓ **Environment:**
 - ❖ **Eutrophication:** Excessive use of nitrate and phosphate fertilizers can lead to runoff into water bodies, causing algal blooms that deplete oxygen and harm aquatic life.
 - ❖ **Soil Salinization:** Over-irrigation in arid and semi-arid regions can lead to the accumulation of salts in the topsoil, making it unsuitable for plant growth.
 - ❖ **Air Pollution:** Dust from some salts can contribute to particulate matter pollution, affecting air quality and human health.

Therefore, it is important to:

- ✓ **Use table salt in moderation.**
- ✓ **Apply fertilizers responsibly and avoid excessive use.**
- ✓ **Manage irrigation practices to prevent soil salinization.**
- ✓ **Dispose of salt-containing waste properly.**
- ✓ **Be aware of the potential environmental impacts of different salts.**

Sub-Strand 3.5: Rates of Reactions

The rate of a chemical reaction is a measure of how quickly reactants are consumed or products are formed over time. It is typically expressed as the change in concentration of a reactant or product per unit time (e.g., mol/L·s or g/s).

a) Rate of Chemical Reactions:

The rate of a chemical reaction can be determined by monitoring the change in:

- ✓ **Concentration of reactants:** Decreases over time as they are converted into products.
- ✓ **Concentration of products:** Increases over time as the reaction proceeds.
- ✓ **Mass of reactants or products:** Changes over time.
- ✓ **Volume of a gas produced or consumed:** Changes over time (if a gas is involved).
- ✓ **Color intensity:** Changes if reactants or products are colored.
- ✓ **pH:** Changes if H^+ or OH^- ions are produced or consumed.

The rate of reaction is not constant and usually decreases over time as the concentration of reactants decreases. The initial rate is the rate at the beginning of the reaction (at time $t=0$).

b) Experiments Involving the Rate of Chemical Reactions:

Simple experiments to investigate reaction rates include:

- **Reaction between Marble Chips (Calcium Carbonate, CaCO_3) and Hydrochloric Acid (HCl):**
 - ✓ $\text{CaCO}_3(\text{s}) + 2\text{HCl}(\text{aq}) \rightarrow \text{CaCl}_2(\text{aq}) + \text{H}_2\text{O}(\text{l}) + \text{CO}_2(\text{g})$
 - ✓ The rate can be measured by:
 - ❖ Measuring the volume of carbon dioxide gas produced over time using a gas syringe.
 - ❖ Measuring the loss in mass of the reaction mixture over time (due to the escape of CO_2).
- **Reaction between Sodium Thiosulfate ($\text{Na}_2\text{S}_2\text{O}_3$) and Dilute Hydrochloric Acid (HCl):**
 - ✓ $\text{Na}_2\text{S}_2\text{O}_3(\text{aq}) + 2\text{HCl}(\text{aq}) \rightarrow 2\text{NaCl}(\text{aq}) + \text{S}(\text{s}) + \text{SO}_2(\text{g}) + \text{H}_2\text{O}(\text{l})$
 - ✓ The rate can be observed by:
 - ❖ Measuring the time taken for a visible amount of yellow precipitate of sulfur to form and obscure a mark placed under the reaction vessel.

Learners should be able to collect data (e.g., volume/mass change vs. time) and plot graphs to visualize the rate of reaction and how it changes over time.

c) Factors that Influence the Rate of Reactions in Both Biological and Chemical Processes:

Several factors can affect the rate of chemical reactions:

❖ Temperature:

- ✓ **Chemical Reactions:** Generally, increasing the temperature increases the rate of reaction. This is because at higher temperatures, reactant molecules have more kinetic energy, leading to more frequent and more energetic collisions, thus increasing the probability of successful reactions (collisions with sufficient energy to overcome the activation energy). For many reactions near room temperature, the rate doubles for every 10°C rise in temperature.
- ✓ **Biological Processes (Enzyme-catalyzed reactions):** Enzyme activity is highly temperature-dependent. There is an optimum temperature at which the enzyme activity and hence the rate of reaction is maximum. Above the optimum temperature, the enzyme's tertiary structure is disrupted (denaturation), leading to a decrease and eventual loss of activity. Below the optimum, the rate is lower due to reduced kinetic energy and fewer effective collisions between the enzyme and substrate.

❖ Concentration of Reactants:

- ✓ **Chemical Reactions:** Increasing the concentration of reactants generally increases the rate of reaction. With more reactant molecules in a given volume, there are more frequent collisions between them, increasing the likelihood of successful reactions.
- ✓ **Biological Processes (Enzyme-catalyzed reactions):** Increasing the substrate concentration generally increases the rate of reaction up to a certain point (V_{max} , maximum velocity). At high substrate concentrations, all the active sites of the enzyme molecules become saturated with substrate, and further increases in substrate concentration do not increase the rate.

❖ Surface Area of Solid Reactants:

- ✓ **Chemical Reactions involving solids:** Increasing the surface area of a solid reactant (e.g., by using a powder instead of a large piece) increases the rate of reaction. This is because more particles of the solid are exposed for collision with the other reactants.
- ✓ **Biological Processes:** Surface area is important in processes like digestion (enzymes acting on food particles) and gas exchange (large surface area of alveoli in lungs). Enzymes themselves have specific active sites (surface areas) where substrates bind.

❖ Pressure (for gaseous reactions):

- ✓ **Chemical Reactions involving gases:** Increasing the pressure of gaseous reactants increases their concentration (number of molecules per unit volume), leading to more frequent collisions and an increased rate of reaction.
- ✓ **Biological Processes:** Pressure changes can affect gas solubility and enzyme activity in some organisms, particularly those in deep-sea environments.

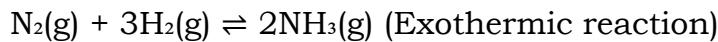
❖ Catalyst:

- ✓ **Chemical Reactions:** A catalyst is a substance that increases the rate of a chemical reaction without itself being permanently changed. Catalysts provide an

alternative reaction pathway with a lower activation energy, thus allowing more collisions to be successful at a given temperature.

- ✓ **Biological Processes:** Enzymes are biological catalysts that significantly speed up biochemical reactions in living organisms. They are highly specific for their substrates and reactions.

❖ **Light (Photochemical Reactions):**


- ✓ **Chemical Reactions:** Some reactions are initiated or accelerated by light (photochemical reactions). Light provides the activation energy needed for the reaction to start.
- ✓ **Biological Processes:** Photosynthesis is a prime example of a light-dependent biological process where light energy is used to drive the reaction. Vision also involves light-sensitive pigments undergoing chemical changes.

d) Accounting for the Efficiency of Chemical Reactions in Industrial Processes:

Efficiency in industrial chemical processes is crucial for economic viability and sustainability. Factors considered include:

- ✓ **Rate of Reaction:** Achieving a sufficiently high rate of reaction to produce the desired amount of product in a reasonable time.
- ✓ **Yield of Products:** Maximizing the amount of desired product obtained from the reactants. This is often governed by equilibrium principles and reaction conditions.
- ✓ **Cost of Production:** Minimizing energy consumption (temperature, pressure), catalyst costs, and waste generation.
- ✓ **Safety:** Ensuring safe operating conditions to prevent accidents and environmental hazards.
- ✓ **Environmental Impact:** Minimizing the release of harmful byproducts and unreacted materials.

The Haber Process (Synthesis of Ammonia, NH_3):

- ✓ **Optimum Temperature (around 450°C):** A compromise between rate and yield. Higher temperatures favor a faster rate but shift the equilibrium to the left (lower yield of ammonia because the reaction is exothermic).
- ✓ **High Pressure (around 200 atmospheres):** High pressure increases the concentration of gaseous reactants, leading to a faster rate and shifts the equilibrium to the right (higher yield of ammonia because there are fewer moles of gas on the product side).
- ✓ **Catalyst (iron catalyst):** Speeds up the rate of reaction by providing an alternative pathway with lower activation energy, allowing the reaction to proceed at a lower temperature than would otherwise be required for a reasonable rate. The catalyst does not affect the position of the equilibrium (yield).
- ✓ **Recycling of Unreacted Materials:** Unreacted nitrogen and hydrogen gases are separated from the ammonia and recycled back into the reaction vessel. This increases the overall yield and reduces waste.

- ✓ **Continuous Process:** Reactants are continuously fed in, and products are continuously removed, allowing for efficient and continuous production.
- ✓ **Safety:** High pressures and temperatures require robust equipment and strict safety protocols to prevent leaks and explosions. Environmental considerations include minimizing energy consumption and potential emissions.

e) Appreciation of the Significance of Manipulating Factors Affecting Chemical Reactions in Nature:

Understanding and sometimes manipulating factors affecting chemical reactions is significant in various natural processes:

- ✓ **Enzyme Activity in Biological Systems:** Organisms regulate temperature, pH, and substrate concentration to control the rates of enzyme-catalyzed reactions necessary for metabolism, growth, and other life processes.
- ✓ **Photosynthesis:** The rate of photosynthesis in plants is affected by light intensity, carbon dioxide concentration, and temperature, influencing plant growth and the Earth's atmosphere.
- ✓ **Decomposition:** The rate of decomposition of organic matter by microorganisms is influenced by temperature, moisture, oxygen availability, and the nature of the organic material, affecting nutrient cycling in ecosystems.
- ✓ **Climate Change:** The rate of certain chemical reactions in the atmosphere, influenced by factors like temperature and the presence of catalysts (e.g., pollutants), can contribute to phenomena like ozone depletion and greenhouse gas accumulation.
- ✓ **Geochemical Processes:** Rates of weathering, mineral formation, and other geological processes are affected by temperature, pressure, and the presence of catalysts (e.g., water, acids).
- ✓ **Industrial Biotechnology:** Humans manipulate conditions (temperature, pH, nutrients) to optimize the rate and yield of biochemical reactions carried out by microorganisms in processes like fermentation and bioremediation.

STRAND 4.0: GENERAL PHYSICS

Sub-Strand 4.1: Turning Effect of Force

- ✓ Force can cause an object to accelerate linearly, but it can also cause an object to rotate about a pivot point. This rotational effect of a force is known as its **turning effect** or **moment**.

a) Determining Moments of a Force at a Point:

- The turning effect of a body is called the moment of that force.
- The turning effect produced depends on both the size of the force and the distance from the pivot.
- The moment of a force about a point is the product of the force applied and the perpendicular distance from the pivot (or turning point) to the line of action of the force.

Hence, **Moments of a force = Force x perpendicular distance from pivot.**

- ❖ **Moment of a Force:** The moment of a force about a pivot is the measure of its tendency to cause rotation about that pivot. It depends on both the magnitude of the force and the perpendicular distance from the pivot to the line of action of the force.
- ❖ **Formula:** Moment (τ) = Force (F) \times Perpendicular distance from the pivot to the line of action of the force (d)
 - $\tau = F \times d$
- ❖ **Units:** The SI unit of moment is the Newton-metre (Nm).
- ❖ **Line of Action of a Force:** An imaginary line extending indefinitely along the direction of the force.
- ❖ **Perpendicular Distance (Lever Arm):** The shortest distance from the pivot to the line of action of the force. It is the component of the distance that is at a right angle (90°) to the force.

Direction of Moment: Moments can be either clockwise or anticlockwise, depending on the direction the force tends to rotate the object about the pivot. By convention, clockwise moments are often taken as negative, and anticlockwise moments as positive (or vice versa, as long as consistency is maintained).

Steps to Determine the Moment of a Force:

1. Identify the pivot point.
2. Determine the magnitude and direction of the force.
3. Find the perpendicular distance from the pivot to the line of action of the force.
4. Multiply the force by the perpendicular distance to calculate the magnitude of the moment.
5. Determine the direction of the moment (clockwise or anticlockwise) based on the direction of the force relative to the pivot.

b) Calculation of Moments of Anti-Parallel Forces Using a Formula:

- **Anti-Parallel Forces:** Forces that act in opposite directions. When anti-parallel forces act on an object and tend to cause rotation, their moments about a pivot can either add up or oppose each other, depending on the position of the pivot.

Consider a rigid object with two anti-parallel forces, F_1 and F_2 , acting at perpendicular distances d_1 and d_2 respectively from a pivot point.

- **Moment due to F_1 :** $\tau_1 = F_1 \times d_1$ (direction depends on the orientation)
- **Moment due to F_2 :** $\tau_2 = F_2 \times d_2$ (direction is opposite to τ_1)

The **net moment** or **resultant moment** about the pivot is the algebraic sum of the individual moments:

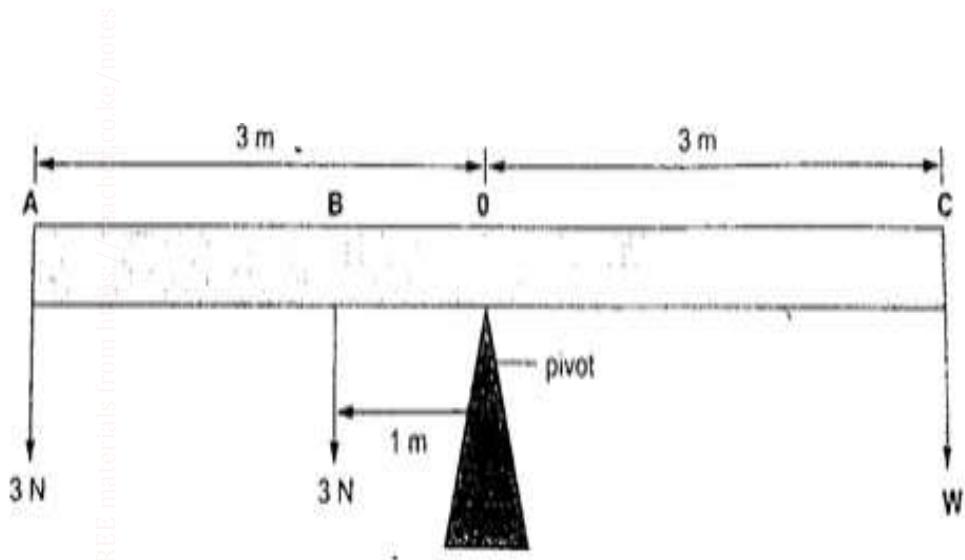
Net Moment (τ_{net}) = $\tau_1 + \tau_2 = (F_1 \times d_1) + (-F_2 \times d_2)$ (assuming one direction is positive and the other negative)

Principle of Moments (for Equilibrium):

- ❖ For a rigid object to be in rotational equilibrium (not rotating), the total clockwise moment about any pivot point must be equal to the total anticlockwise moment about the same pivot point.
- ❖ Sum of Clockwise Moments = Sum of Anticlockwise Moments
This principle is crucial for solving problems involving anti-parallel forces acting on a balanced system (e.g., a balanced lever).

The Law of Moments- It states that when a body is in balance or in equilibrium, the sum of the clockwise moments equals the sum of anti-clockwise moments.

- The SI units of the moments of a force is Newton metre (Nm).


Example: A metre rule is pivoted at its center (50 cm mark). A weight of 2N is hung at the 20 cm mark, and a weight of 3N is hung at the 80 cm mark. Determine if the metre rule is balanced.

- ✓ Pivot at 50 cm.
- ✓ Force 1 (2N) at 20 cm: Distance from pivot $d_1 = 50 - 20 = 30 \text{ cm} = 0.3 \text{ m}$. This force tends to cause an anticlockwise moment. Anticlockwise moment $\tau_1 = 2N \times 0.3 \text{ m} = 0.6 \text{ Nm}$.
- ✓ Force 2 (3N) at 80 cm: Distance from pivot $d_2 = 80 - 50 = 30 \text{ cm} = 0.3 \text{ m}$. This force tends to cause a clockwise moment. Clockwise moment $\tau_2 = 3N \times 0.3 \text{ m} = 0.9 \text{ Nm}$.

Since the clockwise moment (0.9 Nm) is not equal to the anticlockwise moment (0.6 Nm), the metre rule is not balanced and will rotate clockwise.

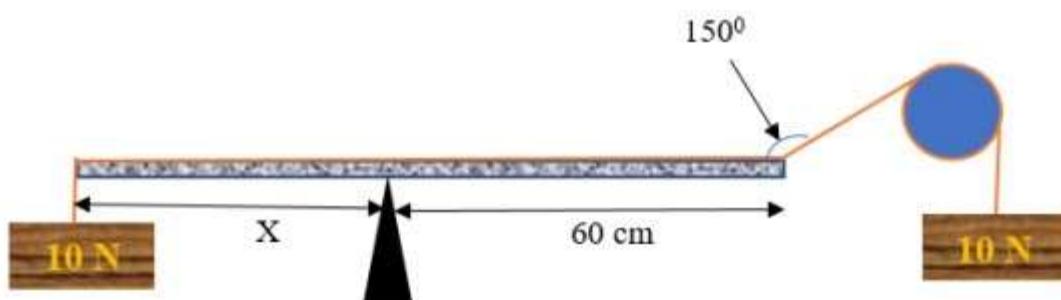
Practice Example 1

1. A uniform rod of negligible mass balances when a weight of 3 N is at A, weight of 3 N is at B and a weight of W is at C. What is the value of weight W?

Solution

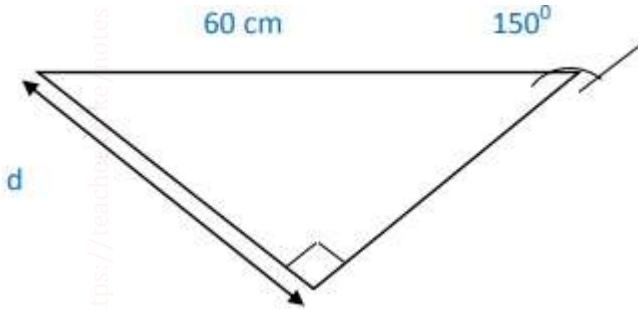
Taking moments about the fulcrum, O then

$$\begin{aligned} \text{Anti-clockwise moments} &= (3 \times 1) + (3 \times 3) \\ &= 3 + 9 = 12 \text{ Nm} \end{aligned}$$


Anti-clockwise moments = clockwise moments

$$3 W = 12 \text{ Nm}$$

$$W = 4 \text{ N}$$


Practice Example 2

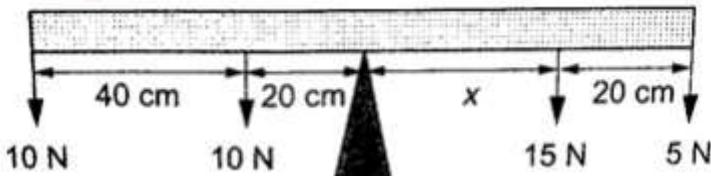
2. The following bar is of negligible weight. Determine the value of 'x' if the bar is balanced.

Solution

The distance from the turning point to the line of action can be determined as;

$$\text{Clockwise moments} = 10 \times 30 = 300 \text{ N cm},$$

$$\text{Anticlockwise moments} = 10 \times 'x' = 10x \text{ N cm.}$$


Using the principle of moments

Anti-clockwise moments = clockwise moments

$$10x = 300, \text{ hence } x = 30 \text{ cm.}$$

Practice Example 3

3. Study the diagram below and determine the value of X and hence the length of the bar.

Solution

$$\text{Clockwise moments} = 15x \text{ N} + 5(X \times 20) \text{ N}$$

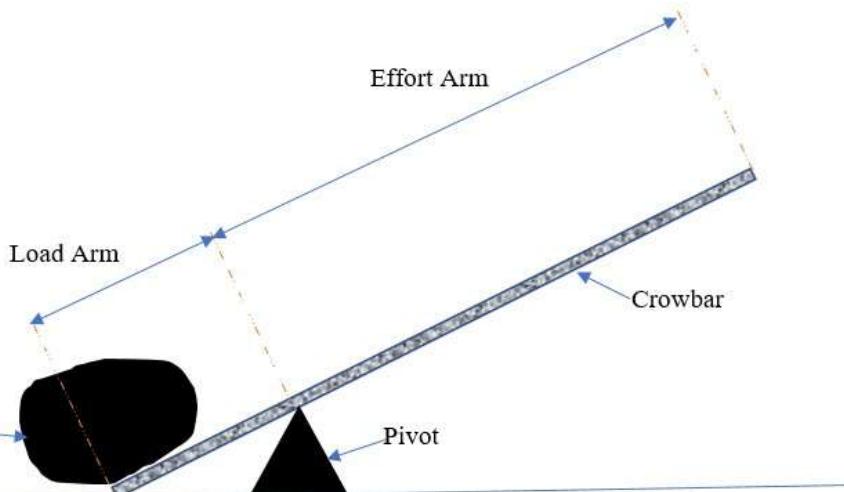
$$\text{Anticlockwise moments} = (20 \times 10) + (60 \times 10) \text{ N cm} = 800 \text{ N cm.}$$

Anti-clockwise moments = clockwise moments

$$800 \text{ N cm} = 15X + 5X + 100$$

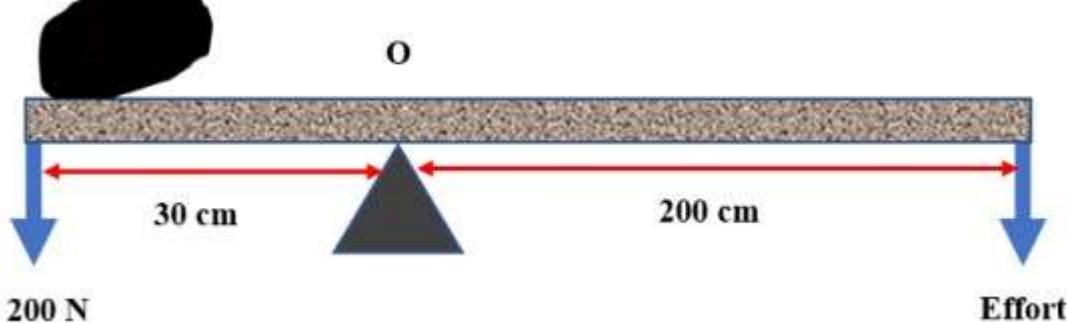
$$800 \text{ N cm} = 20X + 100$$

$$20X = 700$$


$$X = 35 \text{ cm.}$$

Therefore, the length of the bar = $40 + 20 + 35 + 20 = 115 \text{ cm.}$

The Lever


- A lever is any device which can turn about a pivot or fulcrum.
- The applied force is called the effort and is used to overcome the resisting force called the load.

Download this and other FREE revision materials from <https://teacher.co.ke/notes>

Practice Example 1

Consider the following diagram. (The bar is of negligible mass). Determine the effort applied.

Solution

Taking moments about O. Then, clockwise moments = effort x 200 cm.
 Anticlockwise moments = 200 x 30 cm.
 $\text{Effort} = (200 \times 30) / 200 = 30 \text{ N.}$

c) Application of Turning Effect of Force in Real Life Situations:

The turning effect of force is the principle behind the operation of many everyday objects and mechanisms:

- ✓ **Levers:** Simple machines that multiply force or distance. Examples include:
 - ❖ **Seesaw:** Pivot in the middle, forces applied at the ends. Equilibrium is achieved when the moments on both sides of the pivot are equal.
 - ❖ **Crowbar:** Pivot at one end, force applied further along, load to be moved at the other end. A small force applied over a larger distance creates a larger moment to move a heavy load.
 - ❖ **Bottle Opener:** Pivot at one end, force applied to the handle, load (bottle cap) at the other end.
 - ❖ **Wheelbarrow:** Pivot at the wheel, load in the tray, force applied to the handles.
- ✓ **Doors and Hinges:** The hinges act as the pivot. A force applied to the door handle (far from the hinges) creates a larger moment, making it easier to open or close the door compared to applying the same force closer to the hinges.
- ✓ **Spanners and Wrenches:** Used to tighten or loosen nuts and bolts. Applying a force at the end of the handle (larger perpendicular distance) creates a larger moment, allowing a smaller force to achieve the required turning effect.
- ✓ **Steering Wheels:** A larger diameter steering wheel provides a larger perpendicular distance from the center (pivot) to where the force is applied, making it easier to turn the wheel.
- ✓ **Bicycle Pedals:** Applying force to the pedals at a distance from the axle (pivot) causes the cranks to rotate.
- ✓ **Taps and Valves:** Turning the handle creates a moment about the pivot, which opens or closes the valve.
- ✓ **Balances and Scales:** The principle of moments is used to compare unknown weights with known weights by balancing them about a pivot.
- ✓ **Human Body:** Muscles exert forces on bones (acting as levers with joints as pivots) to produce movement (e.g., bending the arm at the elbow).

d) Importance of the Turning Effect of Force in Everyday Life:

The turning effect of force is a fundamental principle that underpins the operation of countless tools, machines, and even biological systems, making many tasks easier and more efficient. Without understanding and applying this principle:

- We would struggle to open doors or bottles.
- Using tools like spanners and crowbars would be much more difficult.
- Simple machines like levers and seesaws would not function.
- Steering vehicles would require much greater effort.
- Many mechanisms in our bodies would not work as they do.

Sub-Strand 4.2: Linear Motion with Constant Acceleration

Linear motion refers to motion in a straight line. Constant acceleration means that the velocity of the object changes by the same amount in equal intervals of time.

a) Terms Used in Linear Motion:

- ✓ **Distance (s):** The total length of the path traveled by an object, regardless of direction. It is a scalar quantity (has magnitude only). SI unit: metre (m).
- ✓ **Displacement (s or Δx):** The change in position of an object from its initial point to its final point in a straight line, with a specified direction. It is a vector quantity (has both magnitude and direction). SI unit: metre (m).
- ✓ **Speed (v):** The rate at which an object covers distance. It is a scalar quantity.
 - ❖ Average speed = Total distance traveled / Total time taken
 - ❖ Instantaneous speed = Speed at a particular instant in time. SI unit: metre per second (m/s).
- ✓ **Velocity (v or u, v):** The rate of change of displacement with time. It is a vector quantity (has both magnitude and direction).
 - ❖ Average velocity = Total displacement / Total time taken
 - ❖ Instantaneous velocity = Velocity at a particular instant in time. SI unit: metre per second (m/s).
- ✓ **Acceleration (a):** The rate of change of velocity with time. It is a vector quantity (has both magnitude and direction).
 - ❖ Average acceleration = Change in velocity / Total time taken = (Final velocity - Initial velocity) / Time taken
 - ❖ Instantaneous acceleration = Acceleration at a particular instant in time. SI unit: metre per second squared (m/s²).
- ✓ **Deceleration (or Retardation):** Negative acceleration, indicating that the velocity of the object is decreasing.

b) Calculating Variables of Motion Using Equations of Linear Motion (No Derivations Needed):

For an object moving with constant acceleration in a straight line, the following equations of motion relate the displacement (s), initial velocity (u), final velocity (v), acceleration (a), and time (t):

1. **$v = u + at$** (relates final velocity, initial velocity, acceleration, and time)
2. **$s = ut + \frac{1}{2}at^2$** (relates displacement, initial velocity, acceleration, and time)
3. **$v^2 = u^2 + 2as$** (relates final velocity, initial velocity, acceleration, and displacement)
4. **$s = \frac{1}{2}(u + v)t$** (relates displacement, initial velocity, final velocity, and time)

Steps to Solve Problems:

1. Identify the known variables (u, v, a, t, s) from the problem statement, including their signs (direction).

2. Identify the unknown variable that needs to be calculated.
3. Choose the appropriate equation of motion that includes the known variables and the unknown variable.
4. Substitute the known values into the equation and solve for the unknown variable.
5. State the answer with the correct unit and direction (if it's a vector quantity).

Example: A car starts from rest ($u = 0 \text{ m/s}$) and accelerates uniformly at 2 m/s^2 for 5 seconds. Calculate the final velocity and the distance traveled.

- Known: $u = 0 \text{ m/s}$, $a = 2 \text{ m/s}^2$, $t = 5 \text{ s}$
- Unknown: v , s

1. **To find final velocity (v):** Using the equation: $v = u + at$ $v = 0 + (2 \text{ m/s}^2)(5 \text{ s})$ $v = 10 \text{ m/s}$
2. **To find distance traveled (s):** Using the equation: $s = ut + \frac{1}{2}at^2$ $s = (0 \text{ m/s})(5 \text{ s}) + \frac{1}{2}(2 \text{ m/s}^2)(5 \text{ s})^2$ $s = 0 + \frac{1}{2}(2)(25)$ $s = 25 \text{ m}$

c) Experiments on the Effect of Gravity on Bodies Under Free Fall:

- **Free Fall:** The motion of an object under the influence of gravity alone, neglecting air resistance.
- **Acceleration due to Gravity (g):** The constant acceleration experienced by objects in free fall near the Earth's surface. Its approximate value is 9.8 m/s^2 (often rounded to 10 m/s^2 for simplicity in calculations). The direction of g is always downwards.

Simple Experiment:

1. Drop objects of different masses (e.g., a ball and a piece of paper crumpled into a ball) from the same height simultaneously.
2. Observe that in the absence of significant air resistance (crumpled paper and ball), both objects reach the ground at approximately the same time.
3. This demonstrates that the acceleration due to gravity is the same for all objects, regardless of their mass (neglecting air resistance).

More Quantitative Experiment (using a timer or sensors):

1. Set up a system to measure the time taken for an object to fall a known distance.
2. Drop an object from various known heights and record the time taken to reach the ground.
3. Use the equation of motion $s = ut + \frac{1}{2}gt^2$ (where $u = 0$ for free fall from rest) to analyze the data.
4. Plot a graph of distance (s) against time squared (t^2). The slope of this graph should be approximately $\frac{1}{2}g$, allowing for the experimental determination of the acceleration due to gravity.

Safety Measures:

- Ensure a clear and safe dropping area.
- Use soft landing surfaces to prevent damage to objects and the floor.
- Warn others before dropping objects.
- Avoid dropping objects from excessive heights.

d) Significance of Linear Motion and Free Fall in Real Life:

Understanding linear motion and free fall is crucial in many real-life applications and for comprehending natural phenomena:

- ✓ **Transportation:** The design and analysis of motion of vehicles (cars, trains, airplanes) rely heavily on the principles of linear motion, including acceleration, deceleration, velocity, and displacement.
- ✓ **Sports:** Understanding projectile motion (which involves both horizontal linear motion and vertical motion under gravity) is essential in sports like basketball, football, and track and field.
- ✓ **Engineering:** Civil engineers consider the effects of gravity and motion in the design of structures, bridges, and buildings. Mechanical engineers apply these principles in designing machines and mechanisms.
- ✓ **Aerospace:** The motion of rockets, satellites, and spacecraft is governed by the laws of motion, including those related to acceleration and gravity.
- ✓ **Safety:** Understanding stopping distances of vehicles (related to deceleration), the impact of falling objects (related to free fall), and the design of safety equipment (e.g., airbags, seatbelts) are crucial for preventing accidents and minimizing injuries.
- ✓ **Astronomy:** The motion of celestial bodies (planets, stars, galaxies) is governed by gravitational forces and the principles of motion.
- ✓ **Construction:** Ensuring the stability of falling objects and designing safe lifting mechanisms require an understanding of free fall and motion under gravity.
- ✓ **Everyday Observations:** We constantly observe linear motion and the effects of gravity in our daily lives, from walking and running to objects falling from heights. Understanding these concepts helps us make sense of the world around us and make informed decisions about safety and movement.

Summary of linear motion

It is the study of motion. It is divided into two.

- ✓ Kinematics
- ✓ Dynamics

- In **kinematics**, forces causing motion are disregarded while **dynamics** deals with motion of objects and the forces causing them.

I. Displacement

- Distance moved by a body in a specified direction is called displacement. It is denoted by letter's and has both magnitude and direction. Distance is the movement from one point to another. The Si unit for displacement is the **metre (m)**.

II. Speed

- This is the distance covered per unit time. **Speed = distance covered / time taken**. Distance is a **scalar quantity** since it has magnitude only.

The **SI unit** for speed is **metres per second (m/s or ms^{-1})**

Average speed = total distance covered / total time taken.

- Another unit for speed used is **Km/h**.

Example 1

A body covers a distance of 10m in 4 seconds. It rests for 10 seconds and finally covers a distance of 90m in 60 seconds. Calculate the average speed.

Solution

$$\text{Total distance covered} = 10 + 90 = 100\text{m}$$

$$\text{Total time taken} = 4 + 10 + 6 = 20 \text{ seconds}$$

$$\text{Therefore average speed} = 100/20 = 5\text{m/s}$$

Example 2

Calculate the distance in metres covered by a body moving with a uniform speed of 180 km/h in 30 seconds.

Solution

$$\text{Distance covered} = \text{speed} \times \text{time}$$

$$= 180 \times 1000/60 \times 60 = 50\text{m/s}$$

$$= 50 \times 30 = 1,500\text{m}$$

Example 3

Calculate the time in seconds taken a by body moving with a uniform speed of 360km/h to cover a distance of 3,000 km?

Solution

$$\text{Speed: } 360 \text{ km/h} = 360 \times 1000/60 \times 60 = 100\text{m/s}$$

$$\text{Time} = \text{distance} / \text{speed}$$

$$3000 \times 1000/100 = 30,000 \text{ seconds.}$$

III. Velocity

- This is the change of displacement per unit time. It is a vector quantity.

Velocity=change in displacement/total time taken.

The SI units for velocity are **m/s**.

Example 4

A man runs 800m due North in 100 seconds, followed by 400m due South in 80 seconds.

Calculate,

- His average speed.
- His average velocity.
- His change in velocity for the whole journey

Solution

Average speed: total distance travelled/total time taken.

$$= 800 + 400 / 100 + 80$$

$$= 1200 / 180 = 6.67 \text{ m/s}$$

a. Average velocity: total displacement/total time.

$$= 800 - 400 / 180$$

$$= 400 / 180 = 2.22 \text{ m/s due North}$$

b. Change in velocity=final-initial velocity

$$= (800 / 100) - (400 / 80)$$

$$= 8 - 5 = 3 \text{ m/s due North}$$

Example 5

A tennis ball hits a vertical wall at a velocity of 10m/s and bounces off at the same velocity.

Determine the change in velocity.

Solution

Initial velocity (u) = -10m/s

Final velocity (v) = 10m/s

Therefore change in velocity = v-u

$$= 10 - (-10) = 20\text{m/s}$$

IV. Acceleration

- This is the change of velocity per unit time. It is a vector quantity symbolized by 'a'.

Acceleration 'a' = change in velocity/time taken = v - u/t.

- The SI units for acceleration are **m/s²**.

Example 6

The velocity of a body increases from 72 km/h to 144 km/h in 10 seconds. Calculate its acceleration.

Solution

Initial velocity= 72 km/h = 20m/s

Final velocity= 144 km/h = 40m/s

Therefore 'a' = v - u/t

$$= 40 - 20/10 = 2\text{m/s}^2$$

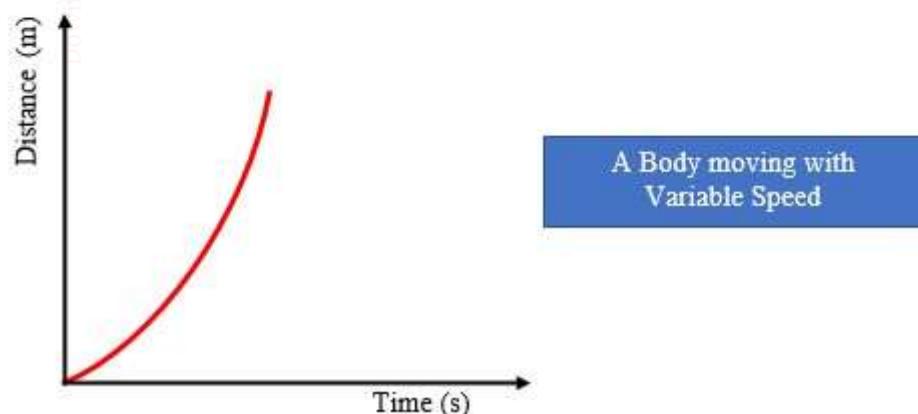
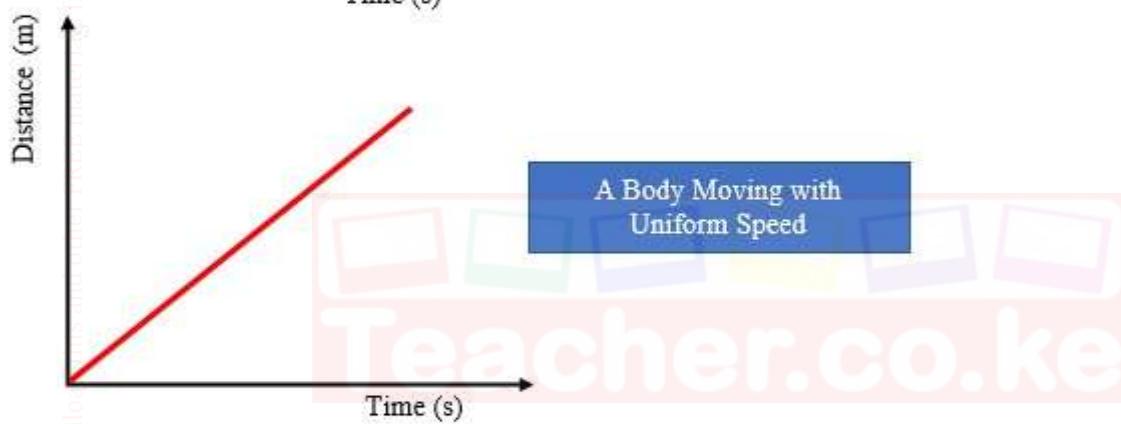
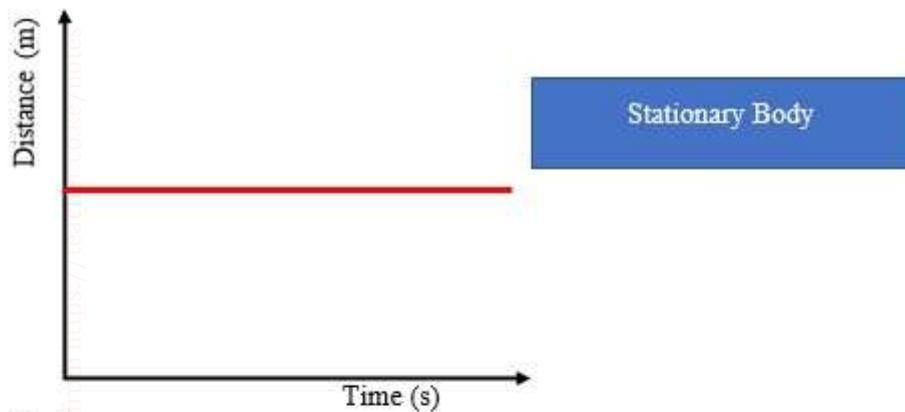
Example 7

A car is brought to rest from 180km/h in 20 seconds. What is its retardation?

Solution

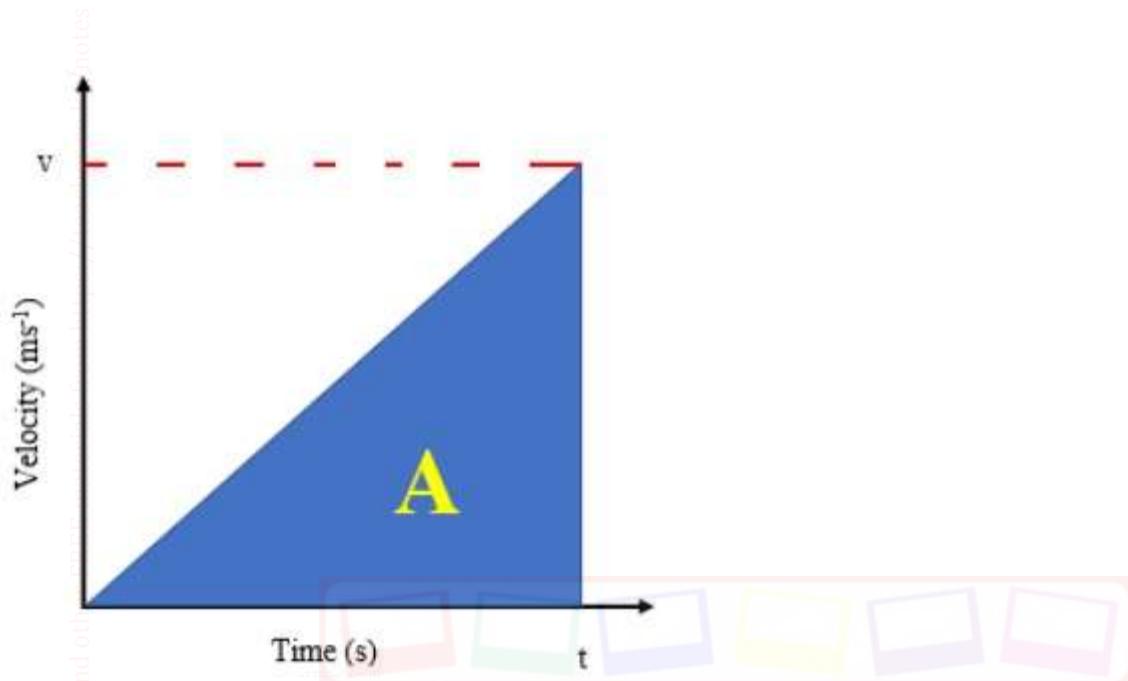
Initial velocity = 180km/h = 50m/s

Final velocity= 0 m/s




$$A = v - u/t = 0 - 50/20$$

$$= -2.5 \text{ m/s}^2$$

Hence retardation is 2.5 m/s²


Motion Graphs

Distance-time Graphs

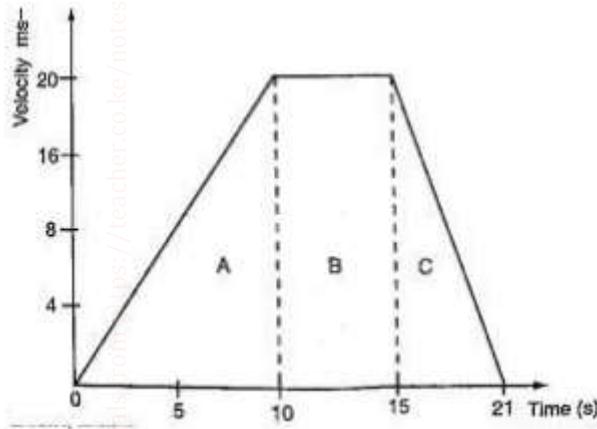
Area under velocity-time graph

Consider a body with uniform or constant acceleration for time 't' seconds;

Distance travelled = average velocity \times t

$$= (0 + v/2) \times t$$

$$= \frac{1}{2}vt$$


This is equivalent to the area under the graph. The area under velocity-time graph gives the distance covered by the body under 't' seconds.

Example 8

A car starts from rest and attains a velocity of 72km/h in 10 seconds. It travels at this velocity for 5 seconds and then decelerates to stop after another 6 seconds. Draw a velocity-time graph for this motion. From the graph;

- Calculate the total distance moved by the car.

ii. Find the acceleration of the car at each stage.

Solution

a. From the graph, total distance covered = area of (A + B + C)

$$= (\frac{1}{2} \times 10 \times 20) + (\frac{1}{2} \times 6 \times 20) + (5 \times 20)$$

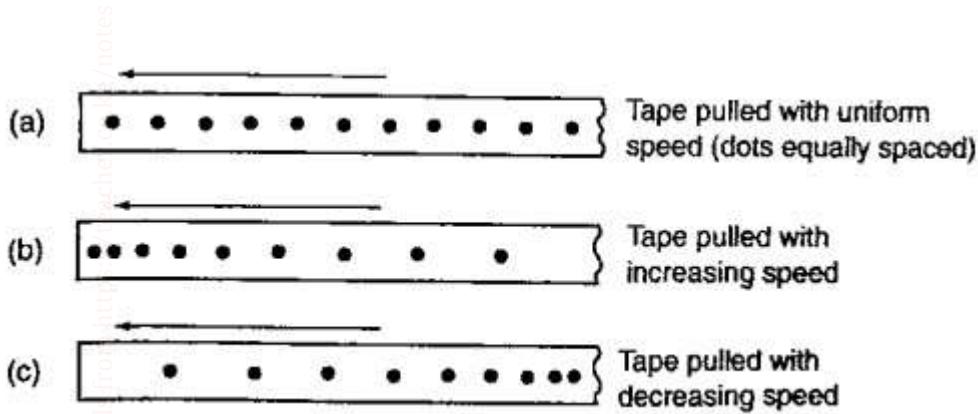
$$= 100 + 60 + 100$$

$$= 260\text{m}$$

Also the area of the trapezium gives the same result.

a.

Acceleration = gradient of the graph


$$\text{Stage A gradient} = (20-0)/(10-0) = 2 \text{ m/s}^2$$

$$\text{Stage b gradient} = (20-20)/(15-10) = 0 \text{ m/s}^2$$

$$\text{Stage c gradient} = (0-20)/(21-15) = -3.33 \text{ m/s}^2$$

Using a ticker-timer to measure speed, velocity and acceleration.

It will be noted that the dots pulled at different velocities will be as follows:

- Most ticker-timers operate at a frequency of **50Hz** i.e. 50 cycles per second hence they make 50 dots per second. Time interval between two consecutive dots is given as,

1/50 seconds= 0.02 seconds. This time is called a tick.

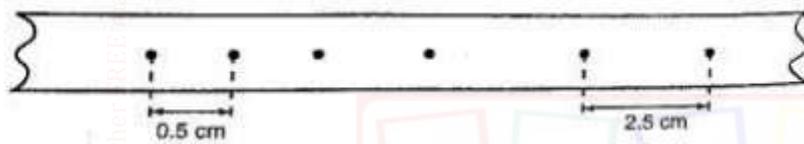
The distance is measured in ten-tick intervals hence time becomes **10×0.02= 0.2 seconds**.

Example 9

a. A tape is pulled steadily through a ticker-timer of frequency 50 Hz. Given the outcome below, calculate the velocity with which the tape is pulled.

Solution

Distance between two consecutive dots= 5cm


Frequency of the ticker-timer=50Hz

Time taken between two consecutive dots=1/50=0.02 seconds

Therefore, velocity of tape=5/0.02= 250 cm/s

Example 10

The tape below was produced by a ticker-timer with a frequency of 100Hz. Find the acceleration of the object which was pulling the tape.

Solution

Time between successive dots = $1/100 = 0.01$ seconds

Initial velocity (u) $0.5/0.01 = 50$ cm/s

Final velocity (v) $2.5/0.01 = 250$ cm/s

Time taken= $4 \times 0.01 = 0.04$ seconds

Therefore, acceleration= $v - u/t = 250 - 50/0.04 = 5,000$ cm/s²

Equations of linear motion

The following equations are applied for uniformly accelerated motion;

$$v = u + at$$

$$a. \ s = ut + \frac{1}{2} at^2$$

$$b. \ v^2 = u^2 + 2as$$

Example 11

A body moving with uniform acceleration of 10 m/s^2 covers a distance of 320 m.

If its initial velocity was 60 m/s. Calculate its final velocity.

Solution

$$V^2 = u^2 + 2as$$

$$= (60)^2 + 2 \times 10 \times 320$$

$$= 3600 + 6400$$

$$= 10,000$$

$$\text{Therefore } v = (10,000)^{1/2}$$

$$v = 100 \text{ m/s}$$

Example 12

A body whose initial velocity is 30 m/s moves with a constant retardation of 3m/s. Calculate the time taken for the body to come to rest.

Solution

$$v = u + at$$

$$0 = 30 - 3t$$

$$30 = 3t$$

$$t = 30 \text{ seconds.}$$

Example 13

A body is uniformly accelerated from rest to a final velocity of 100m/s in 10 seconds. Calculate the distance covered.

Solution

$$s = ut + \frac{1}{2} at^2$$

$$= 0 \times 10 + \frac{1}{2} \times 10 \times 10^2$$

$$= 1000/2 = 500\text{m}$$

Motion Under Gravity

1. Free Fall

The equations used for constant acceleration can be used to become:

$$v = u + gt$$

$$\text{a. } s = ut + \frac{1}{2} gt^2$$

$$\text{b. } v^2 = u^2 + 2gs$$

2. Vertical projection

Since the body goes against force of gravity then the following equations hold

$$v = u - gt$$

$$\text{1. } s = ut - \frac{1}{2} gt^2$$

$$\text{2. } v^2 = u^2 - 2gs$$

N.B time taken to reach maximum height is given by the following $t = u/g$ since $v = 0$

(using equation 1)

Time Of Flight

The time taken by the projectile is the time taken to fall back to its point of projection. Using eq.

2 then, displacement = 0

$$0 = ut - \frac{1}{2} gt^2$$

a. $0 = 2ut - gt^2$

b. $t(2u-gt) = 0$

Hence, $t = 0$ or $t = 2u/g$

$t = 0$ corresponds to the start of projection

$t = 2u/g$ corresponds to the time of flight

The time of flight is twice the time taken to attain maximum height.

Maximum Height Reached

Using equation 3 maximum height, **Hmax** is attained when $v = 0$ (final velocity). Hence

$v^2 = -2gs$; $0 = u^2 - 2gH_{max}$, therefore

a. $2gH_{max} = u^2$

b. $H_{max} = u^2/2g$

Velocity to return to point of projection

At the instance of returning to the original point, total displacement equals to zero.

$v^2 = u^2 - 2gs$ hence $v^2 = u^2$

Therefore $v = u$ or $v = \pm u$

Example 14

A stone is projected vertically upwards with a velocity of 30m/s from the ground. Calculate,

a. The time it takes to attain maximum height

b. The time of flight

c. The maximum height reached

d. The velocity with which it lands on the ground. (take $g=10\text{m/s}$)

Solution

Time taken to attain maximum height

$$T = u/g = 30/10 = 3 \text{ seconds}$$

a. The time of flight

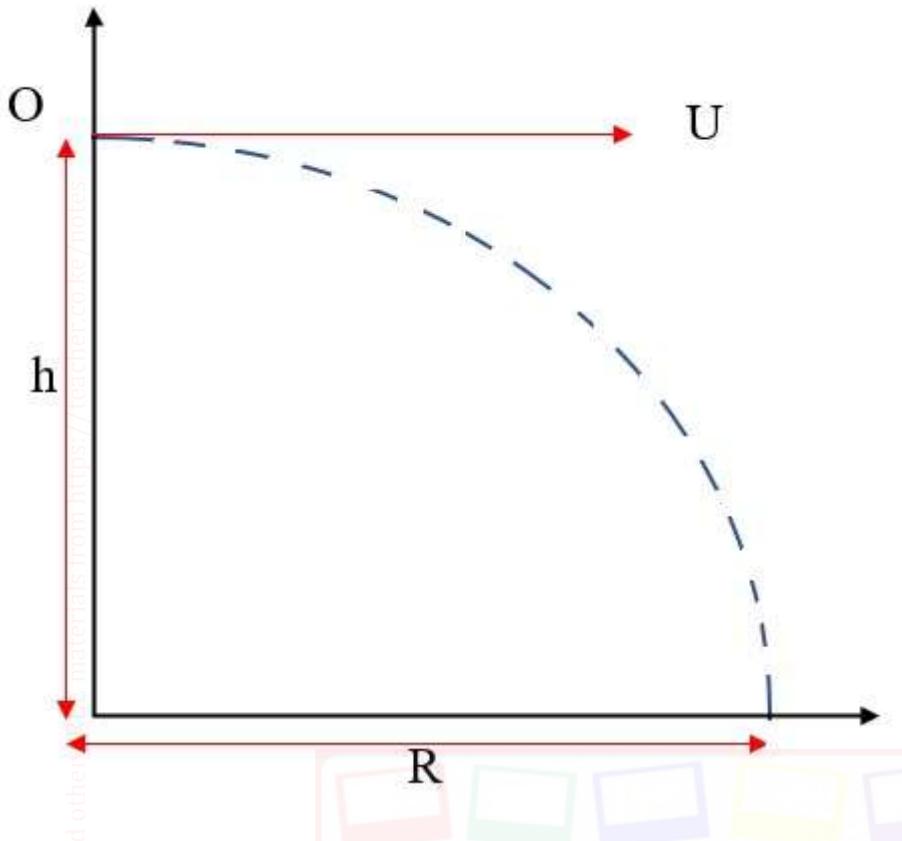
$$T = 2t = 2 \times 3 = 6 \text{ seconds}$$

$$\text{Or } T = 2u/g = 2 \times 30/10 = 6 \text{ seconds.}$$

b. Maximum height reached

$$H_{\text{max}} = u^2/2g = 30 \times 30/2 \times 10 = 45\text{m}$$

c. Velocity of landing (return)


$$v^2 = u^2 - 2gs, \text{ but } s = 0,$$

$$\text{Hence } v^2 = u^2$$

$$\text{Therefore } v = (30 \times 30)^{1/2} = 30\text{m/s}$$

3. Horizontal projection

The path followed by a body (projectile) is called trajectory. The maximum horizontal distance covered by the projectile is called range.

The horizontal displacement 'R' at a time 't' is given by $s = ut + \frac{1}{2}at^2$

Taking $u = u$ and $a = 0$ hence $R = ut$, is the horizontal displacement and $h = \frac{1}{2}gt^2$ is the vertical displacement.

NOTE: The time of flight is the same as the time of free fall.

Example 15

A ball is thrown from the top of a cliff 20m high with a horizontal velocity of 10m/s. Calculate,

- The time taken by the ball to strike the ground.
- The distance from the foot of the cliff to where the ball strikes the ground.
- The vertical velocity at the time it strikes the ground. (take $g=10\text{m/s}^2$)

Solution

$$h = \frac{1}{2} gt^2$$

$$20 = \frac{1}{2} \times 10 \times t^2$$

$$40 = 10t^2$$

$$t^2 = 40/10 = 4$$

$$t = 2 \text{ seconds}$$

a. $R = ut$

$$= 10 \times 2$$

$$= 20 \text{ m}$$

b. $v = u + at = gt$

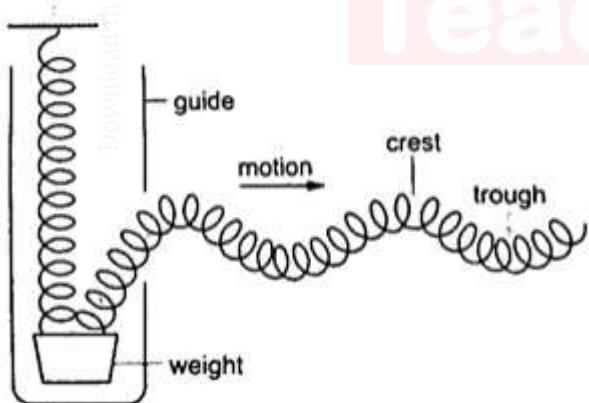
$$= 2 \times 10 = 20 \text{ m/s}$$

Sub-Strand 4.3: Waves

- A wave is simply a disturbance that moves through a medium. Other waves do not require a medium to travel i.e. they can travel in a vacuum, are known as **electromagnetic waves** e.g. radio, X-rays, gamma rays UV rays etc.
- Other waves require a material medium to be transferred and are called **mechanical waves** i.e. water, sound waves etc..

a) Explain the Terms Used in Waves:

- ✓ **Wavelength (λ - lambda):** The distance between two successive points on a wave that are in phase (i.e., vibrating in the same way at the same time). For example, the distance between two consecutive crests or two consecutive troughs in a transverse wave, or the distance between two consecutive compressions or two consecutive rarefactions in a longitudinal wave. SI unit: metre (m).
- ✓ **Period (T):** The time taken for one complete wave to pass a given point. It is also the time taken for one complete oscillation of a particle in the medium. SI unit: second (s).
- ✓ **Amplitude (A):** The maximum displacement of a particle in the medium from its equilibrium (rest) position. It is a measure of the energy carried by the wave; a larger amplitude means more energy. SI unit: metre (m) for mechanical waves.

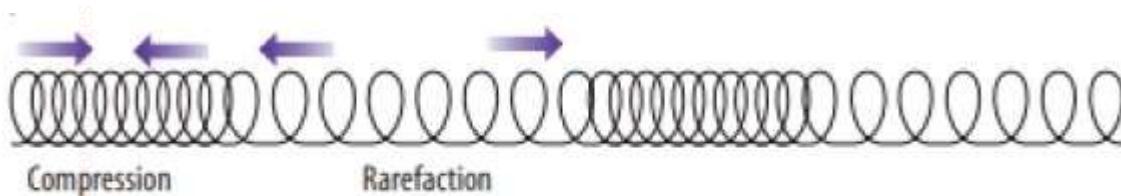

- ✓ **Frequency (f):** The number of complete waves that pass a given point per unit time. It is the reciprocal of the period ($f = 1/T$). SI unit: Hertz (Hz), where 1 Hz = 1 cycle per second.
- ✓ **Velocity (v):** The speed at which the wave propagates through the medium, in a specific direction. It is the distance traveled by the wave per unit time. SI unit: metre per second (m/s).

Types of Waves:

- ✓ **Transverse Waves:** The particles of the medium vibrate perpendicular to the direction of wave propagation (e.g., light waves, water waves (surface)).
- ✓ **Longitudinal Waves:** The particles of the medium vibrate parallel to the direction of wave propagation (e.g., sound waves).

1. Transverse waves

- They consist of a crest and a trough.
- In this case the displacement of the medium caused by these pulses are perpendicular to the direction in which the wave (disturbance) travels.
- A pulse is a single non-repeated disturbance.
- If the pulses are repeated periodically (regularly) they produce a series of waves called periodic transverse wave train.
- They can be produced as shown below.



Teacher.co.ke

2. Longitudinal waves

- These are waves whereby the particles of the medium vibrate parallel to the direction of movement of the disturbance.
- When several turns of a spring are pulled together (**compression**) and then released they tend to spread out to their original position.

- When pulled apart (**rarefaction**) they also return to their original position.
- In this case the displacement of the spring is parallel to the motion of the wave and this is known as longitudinal.

Characteristics of waves

1. All waves have **speed** which depends on the nature of disturbance.
2. All waves have **wavelength** (distance between two successive points in a wave). Represented by the symbol λ and is measured in **metres**.
3. All waves have **frequency** - 'f' which is the number of waves passing a point in one second. It is measured in cycles per second or **hertz (Hz)**. The period of a wave is the time required for a complete wave to pass a given point.
Therefore $T = 1 / f$ or $f = 1 / T$ (period is measured in **seconds**).
The speed 'v' is given as: $v = \lambda / T$, since $f = 1 / T$ then $v = (1 / T) \times \lambda = f \lambda$ or $v = f \lambda$. This is the wave equation.
4. All waves have **amplitude** which is the maximum displacement of the particles of the medium as the wave passes.

b) Interpret the Wave Equation as Used in Science:

The wave equation relates the velocity (v), frequency (f), and wavelength (λ) of a wave:

$$v = f\lambda$$

This equation shows that:

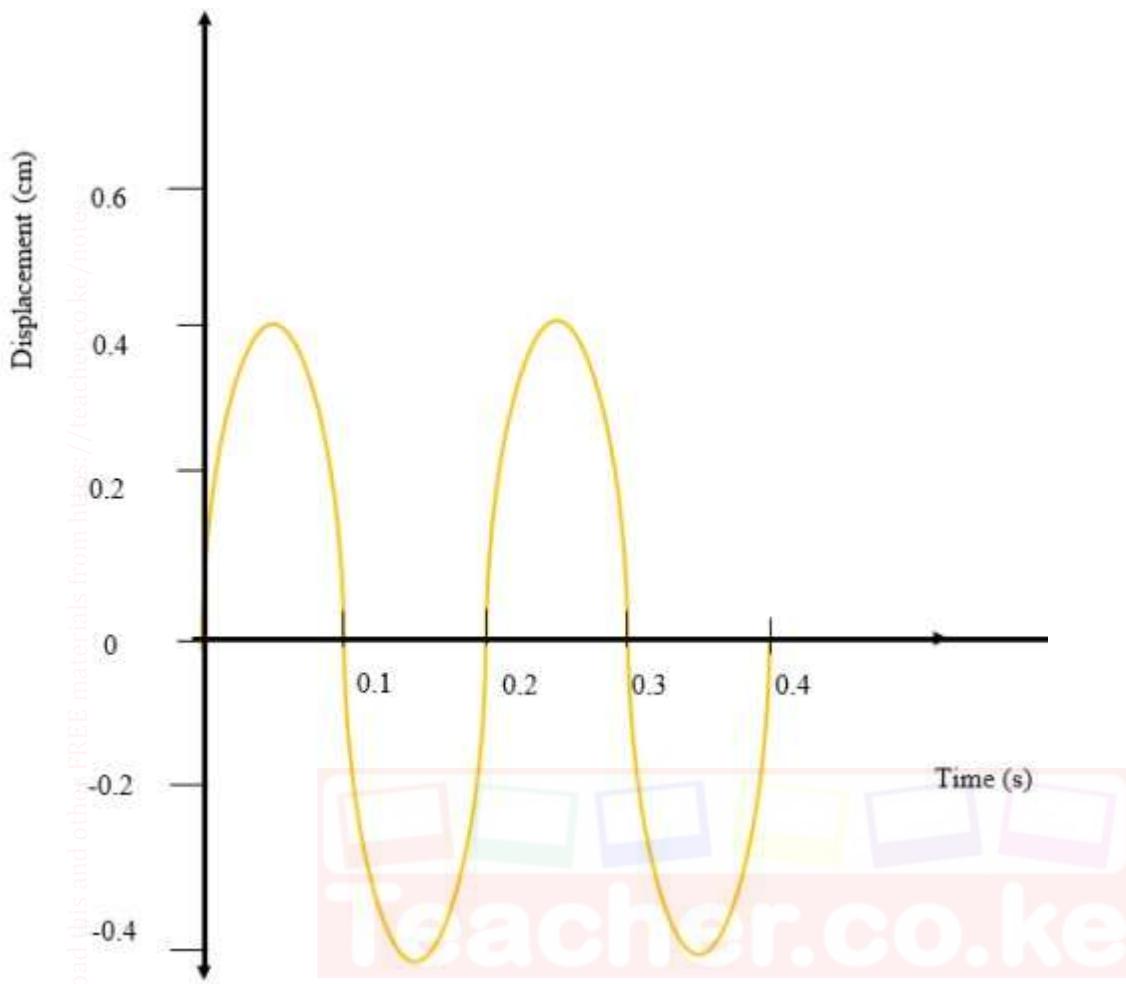
- The velocity of a wave is directly proportional to its frequency when the wavelength is constant. Higher frequency waves travel faster if their wavelength remains the same.
- The velocity of a wave is directly proportional to its wavelength when the frequency is constant. Longer wavelength waves travel faster if their frequency remains the same.
- The frequency of a wave is inversely proportional to its wavelength when the velocity is constant. For a wave traveling at a constant speed, increasing the wavelength decreases the frequency, and vice versa.

This equation is fundamental to understanding the behavior of all types of waves, including mechanical waves (like sound and water waves) and electromagnetic waves (like light and radio waves).

c) Calculate the Wave Characteristics Using the Wave Equation:

To solve problems using the wave equation, you need to know two of the three variables (v, f, λ) to calculate the third.

Practice Examples


1. A sound wave in air has a frequency of 440 Hz and a wavelength of 0.75 meters. Calculate the velocity of the sound wave.
 - o Given: $f = 440 \text{ Hz}$, $\lambda = 0.75 \text{ m}$
 - o Using $v = f\lambda$: $v = (440 \text{ Hz}) \times (0.75 \text{ m}) = 330 \text{ m/s}$
2. A radio wave travels at a velocity of $3.0 \times 10^8 \text{ m/s}$ and has a frequency of 100 MHz ($100 \times 10^6 \text{ Hz}$). Calculate its wavelength.
 - o Given: $v = 3.0 \times 10^8 \text{ m/s}$, $f = 100 \times 10^6 \text{ Hz}$
 - o Rearranging $v = f\lambda$ to solve for λ : $\lambda = v / f$
 - o $\lambda = (3.0 \times 10^8 \text{ m/s}) / (100 \times 10^6 \text{ Hz}) = 3.0 \text{ m}$
3. A water wave has a velocity of 2.0 m/s and a wavelength of 0.5 meters. Calculate its frequency.
 - o Given: $v = 2.0 \text{ m/s}$, $\lambda = 0.5 \text{ m}$
 - o Rearranging $v = f\lambda$ to solve for f : $f = v / \lambda$
 - o $f = (2.0 \text{ m/s}) / (0.5 \text{ m}) = 4.0 \text{ Hz}$
4. A rope is displaced at a frequency of 3 Hz. If the distance between two successive crests of the wave train is 0.8 m, calculate the speed of the waves along the rope.

Solution

$$v = f\lambda = 3 \times 0.8 = 2.4 \text{ m}$$

$$\text{Hz} = 2.4 \text{ m/s.}$$

5. The figure below illustrates part of the displacement-time graph of a wave travelling across water at a particular place with a velocity of 2 ms^{-1} . Calculate the wave's:
 - a) Amplitude
 - b) Frequency (f)
 - c) Wavelength (λ)

Solution

a) From the graph, maximum displacement

$$(a) = 0.4 \text{ cm.}$$

b) From the graph, period T = time for one cycle = 0.20 seconds.

$$\text{So } f = 1 / T = 1 / 0.20 = 5 \text{ Hz.}$$

c) Velocity = $f \lambda$ hence $\lambda = 2 / 5 = 0.4 \text{ m.}$

d) Effects of Properties of Waves in Real Life:

- **Reflection:** The bouncing back of a wave when it strikes a boundary or an obstacle.
 - ✓ **Sound:** Echoes are a result of the reflection of sound waves from surfaces. The time delay between the original sound and the echo can be used to estimate distances.
 - ✓ **Light:** Reflection of light from surfaces allows us to see objects. Mirrors utilize the reflection of light to create images.
 - ✓ **Water Waves:** Water waves reflect off barriers like seawalls and shorelines.

- **Refraction:** The bending of a wave as it passes from one medium to another with a different wave velocity. This change in velocity causes a change in direction.
 - ✓ **Sound:** Sound waves can refract when passing through air layers of different temperatures. During the day, the air near the ground is warmer than the air above, causing sound waves to bend upwards, making it harder to hear sounds from a distance. At night, the air near the ground is cooler, causing sound waves to bend downwards, allowing sounds to travel further.
 - ✓ **Light:** Refraction of light occurs when it passes through a prism, causing the separation of white light into its constituent colors (dispersion). Lenses in eyeglasses and cameras refract light to focus it and form images. The apparent bending of a straw in a glass of water is due to the refraction of light as it passes from water to air.
 - ✓ **Water Waves:** Water waves refract when they move from deep water to shallow water, causing them to slow down and change direction, often bending towards the shoreline.
- **Diffraction:** The bending of waves around obstacles or the spreading of waves as they pass through a narrow opening. The extent of diffraction depends on the wavelength of the wave and the size of the obstacle or opening. Diffraction is more significant when the wavelength is comparable to or larger than the size of the obstacle or opening.
 - ✓ **Sound:** We can hear sounds from around a corner even though the sound waves don't travel in a straight line. This is because sound waves diffract around the corner. The longer wavelength of sound compared to light makes diffraction of sound more noticeable in everyday situations.
 - ✓ **Light:** Diffraction of light can be observed when light passes through a very narrow slit or around the edges of an object, causing the light to spread out and create diffraction patterns (alternating bright and dark fringes). This is less noticeable in everyday life because the wavelength of light is very small.
 - ✓ **Water Waves:** Water waves spread out after passing through a gap in a barrier.

e) Applications of Properties of Waves in Real Life:

The properties of waves are utilized in numerous technologies and natural phenomena:

- **Reflection:**
 - ✓ **Sonar (Sound Navigation and Ranging):** Uses the reflection of sound waves to determine the depth of water, locate underwater objects, and map the seabed.
 - ✓ **Radar (Radio Detection and Ranging):** Uses the reflection of radio waves to detect the position and speed of distant objects like aircraft, ships, and weather systems.
 - ✓ **Medical Imaging (Ultrasound):** Uses the reflection of high-frequency sound waves to create images of internal organs and tissues.
 - ✓ **Acoustics:** Design of concert halls and auditoriums utilizes the reflection of sound to optimize sound distribution and minimize echoes.
- **Refraction:**
 - ✓ **Optical Instruments (Lenses):** Telescopes, microscopes, cameras, and eyeglasses use the refraction of light through lenses to focus light and form magnified or corrected images.

- ✓ **Communication (Optical Fibers):** Total internal reflection, a phenomenon related to refraction, is used in optical fibers to transmit data as light pulses over long distances with minimal loss.
- ✓ **Atmospheric Phenomena (Mirages):** Refraction of light through air layers of different temperatures can create mirages.
- **Diffraction:**
 - ✓ **Spectroscopy:** Diffraction gratings (surfaces with many closely spaced slits) are used to diffract light and separate it into its component wavelengths, allowing for the analysis of light sources and the identification of substances.
 - ✓ **Radio Communication:** Diffraction allows radio waves to bend around obstacles like buildings and hills, enabling signal reception even when there is no direct line of sight to the transmitter.
 - ✓ **Holography:** Diffraction patterns are used to create three-dimensional images in holograms.

Sub-Strand 4.4: Magnetism and Electromagnetic Induction (15 lessons)

Magnetism is a phenomenon by which materials exert attractive or repulsive forces on other materials. Electromagnetic induction is the process by which an electromotive force (e.m.f.) is induced in a conductor when it is exposed to a changing magnetic field.

- Magnetic materials are those that are strongly attracted by magnets while non-magnetic ones are those that are not affected by magnets.
- Substances that are repelled by magnets are said to be diamagnetic whereas those which are strongly attracted i.e. iron, nickel, cobalt are called ferromagnetic materials.
- The materials that are so lightly attracted such that the magnet seems to have no effect on them are called **paramagnetic materials**.
- **Ferrites** are a mixture of **iron oxide** and **barium oxide** are the most newly developed magnetic materials.

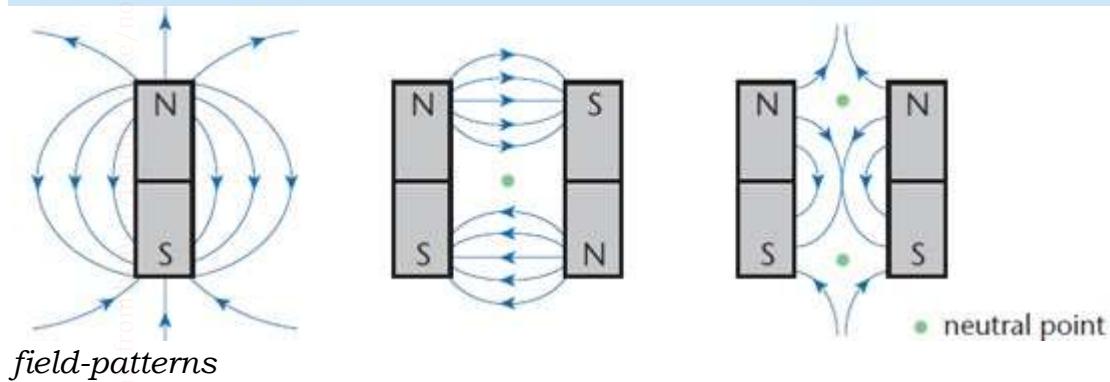
Properties of Magnets

1. They are double poled substances with both the North and South poles.
2. Like poles repel and unlike poles attract. Repulsion is a sure method of determining whether two substances are magnets.
3. The greatest magnetic force is concentrated around the poles of a magnet.

a) Describe the Methods of Magnetization and Demagnetization in Soft Iron:

- **Magnetization of Soft Iron:** Soft iron is a ferromagnetic material that can be easily magnetized and demagnetized. Methods include:
 - ✓ **Stroking:** Stroking a piece of soft iron repeatedly in one direction with one pole of a permanent magnet. This aligns the magnetic domains within the soft iron, causing it to become magnetized.

- ✓ **Induction (Magnetic Induction):** Placing a piece of soft iron near a strong permanent magnet. The magnetic field of the permanent magnet induces temporary magnetism in the soft iron. The soft iron loses most of its magnetism when the permanent magnet is removed.
- ✓ **Electrical Method (Using a Solenoid):** Placing a piece of soft iron inside a solenoid (a coil of wire) and passing a direct current (DC) through the solenoid. The magnetic field produced by the current aligns the magnetic domains in the soft iron, magnetizing it. The strength of the induced magnet depends on the current and the number of turns in the solenoid. Soft iron retains only a weak magnetism after the current is switched off.
- ✓ **Hammering in the Presence of a Magnetic Field:** Placing soft iron in a magnetic field and gently hammering it can help align the magnetic domains, leading to magnetization.
- **Demagnetization of Soft Iron:** Removing magnetism from soft iron can be achieved by:
 - ✓ **Heating:** Heating a magnetized piece of soft iron to a high temperature (above its Curie temperature). The increased thermal energy causes the magnetic domains to become randomly oriented, thus destroying the magnetism.
 - ✓ **Hammering:** Subjecting a magnetized piece of soft iron to repeated hammering or mechanical shock. This randomizes the alignment of the magnetic domains. Hammering is more effective if the soft iron is oriented in an East-West direction during the process to minimize alignment with the Earth's magnetic field.
 - ✓ **Electrical Method (Using an Alternating Current Solenoid):** Placing a magnetized piece of soft iron inside a solenoid and passing an alternating current (AC) through the solenoid. The alternating magnetic field produced by the AC repeatedly magnetizes and demagnetizes the soft iron in alternating directions. As the AC current is gradually reduced to zero, the magnetic domains become randomly oriented, and the soft iron is demagnetized. This is a very effective method.

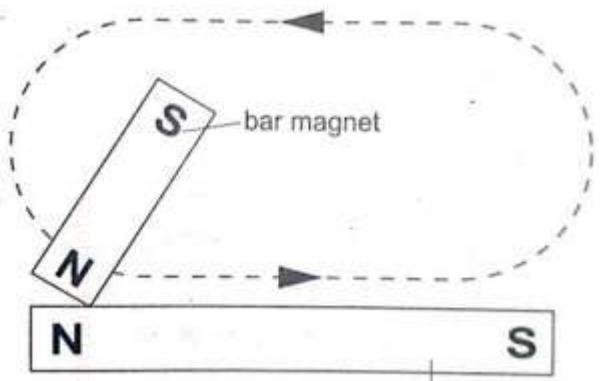

b) Describe the Magnetic Field Patterns Around a Magnet:

- **Magnetic Field:** - Magnetic field is the space around a magnet where magnetic field (force) is observed.
- **Properties of Magnetic Field Lines:**
 - They emerge from the North pole of a magnet and enter the South pole externally.
 - They form continuous closed loops, passing through the magnet internally from the South pole to the North pole.
 - The direction of the field line at any point indicates the direction of the force that would be exerted on a north magnetic pole placed at that point.
 - The strength of the magnetic field is indicated by the closeness of the field lines; where the lines are closer, the field is stronger.
 - Magnetic field lines never cross each other.
- **Magnetic Field Pattern Around a Bar Magnet:** The field lines form loops extending from the North pole to the South pole. The field is strongest at the poles (lines are closest) and weaker further away from the magnet and between the poles (lines are spread out).

Plotting field patterns

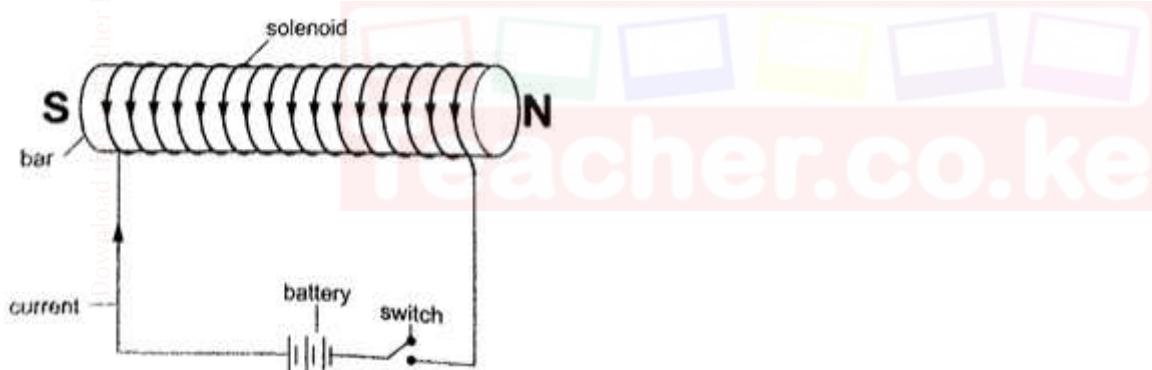
- A line of force gives the direction of the magnetic field at each point along it.
- Their closeness is a measure of the strength of the magnetic field or of the force that would be exerted by the bar magnet.

Examples of Magnetic Field Patterns


- Can you see the neutral points? There is no magnetic field at such points.

Making Magnets

- The following are methods used to make magnets.

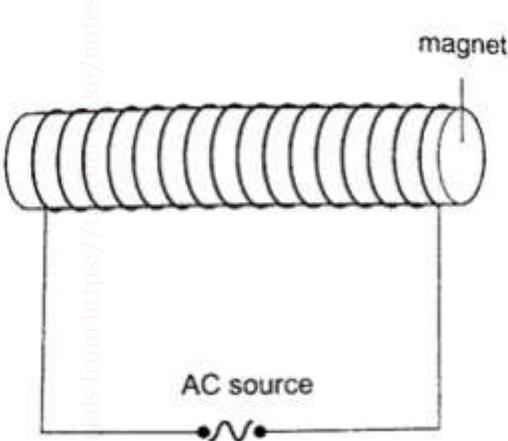

a) **Magnetic induction** – this is a process by which magnets are made by placing ferromagnetic materials in a magnetic field.

b) **Magnetizing by stroking** – the object to be magnetized is placed on a bench then a bar magnet is dragged along the length of the bar from one end to the other. This is repeated several times and the object becomes magnetized. This method is known as ***single-stroke method***.

Magnetizing By Stroking

c) **Magnetizing using an electric current** – this is the use of magnetic effect of an electric current through a solenoid (insulated wire of many turns).

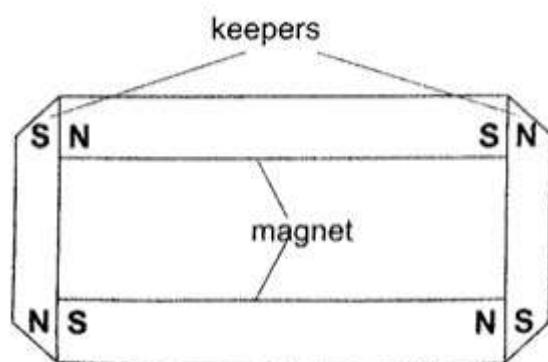
Magnetizing Using an Electric Current


Demagnetizing

-Demagnetizing is the process of removing magnetic properties of a magnet.

-The following methods are which a magnet can lose its magnetism;

1. Hammering them hard with their poles facing E-W direction.


2. Heating them strongly.
3. Placing a magnet inside a solenoid and passing an a.c. current through it for a short time.

Demagnetizing

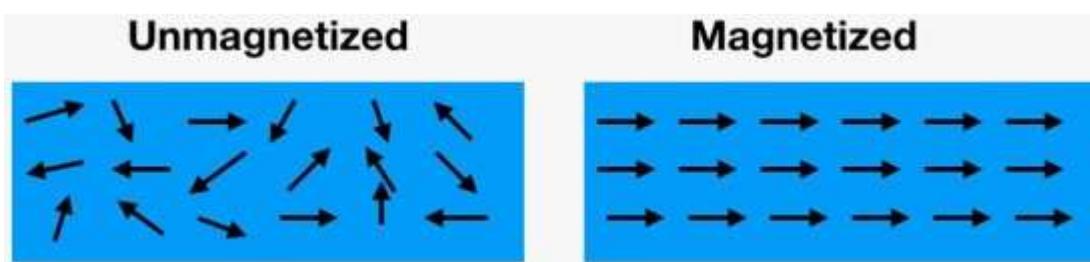
Caring for Magnets

- a) Magnets should be stored in pairs with unlike poles adjacent to each other attached to pieces of soft iron called **keepers**.

b) Magnets should not be hammered especially with their poles facing **E-W** direction.

c) Magnets should not be heated strongly or dropped roughly on hard surfaces.

d) Magnets should not be placed near alternating currents.


e) Magnets should be kept dry and clean since rust can make them lose their magnetism.

Uses of Magnets

1. Used in making other magnets.
2. Used in making loud speakers.
3. Used in making moving coil meters.
4. Used in making telephone speakers.

Domain theory of magnetism.

- In ferromagnetic substances small atomic magnets form large groups called domains.
- These atomic magnets face one direction where the direction varies from one domain to another.
- In an un-magnetized crystal the directions of these domains are different hence their resultant magnetism is zero.

- When a magnetic material is placed in a magnetic field the atomic magnets rotate and eventually all domains face the same direction.
- When this happens then the material becomes magnetized.
- When a material is magnetized we say it is saturated.

- This means that the magnetism of the material cannot be increased by any other method and this is the domain theory of magnetism.

c) Describe Induced E.M.F.:

- ✓ **Electromagnetic Induction:** The phenomenon where an electromotive force (e.m.f.) is induced in a conductor when it experiences a change in magnetic flux.
- ✓ **Magnetic Flux (Φ):** A measure of the total magnetic field that passes through a given area. It is proportional to the number of magnetic field lines passing through the area. The unit of magnetic flux is the Weber (Wb).
- ✓ **Induced E.M.F.:** The voltage generated in a conductor due to a change in magnetic flux linked with it. This e.m.f. can cause a current to flow in a closed circuit.
- ✓ **Faraday's Law of Electromagnetic Induction (Qualitative):** The magnitude of the induced e.m.f. is proportional to the rate of change of magnetic flux linkage with the conductor. A faster change in magnetic flux results in a larger induced e.m.f.
- ✓ **Lenz's Law (Qualitative):** The direction of the induced current (and hence the induced e.m.f.) is such that it opposes the change in magnetic flux that produces it. This means the induced magnetic field will try to counteract the change in the original magnetic field.

d) Experiment on Electromagnetic Induction:

Simple Experiment:

1. Connect a galvanometer (a sensitive current-detecting meter) to the ends of a coil of wire.
2. Hold a strong permanent magnet near the coil.
3. Observe the galvanometer reading. It should show no current flow when the magnet and coil are stationary.
4. Move the magnet towards the coil. Observe that the galvanometer shows a temporary deflection, indicating an induced current.
5. Stop moving the magnet. The galvanometer reading returns to zero.
6. Move the magnet away from the coil. Observe that the galvanometer shows a temporary deflection in the opposite direction, indicating an induced current flowing in the opposite direction.
7. Keep the magnet stationary and move the coil towards and away from the magnet. Similar temporary deflections in the galvanometer will be observed.
8. Quickly rotate the magnet near the coil or rotate the coil near the magnet. A continuous (but alternating) deflection of the galvanometer needle may be observed, indicating a continuously induced e.m.f. and current.

e) Factors Affecting the Magnitude of Induced E.M.F. (Qualitative Treatment):

Based on Faraday's Law, the magnitude of the induced e.m.f. depends on the rate of change of magnetic flux linkage. This rate of change can be affected by several factors:

- **Strength of the Magnetic Field:** A stronger magnet produces a stronger magnetic field, leading to a larger magnetic flux and a greater induced e.m.f. for the same rate of change.
- **Speed of Relative Motion:** The faster the relative motion between the magnet and the coil (or conductor), the greater the rate of change of magnetic flux linkage, and hence the larger the induced e.m.f.
- **Number of Turns in the Coil:** If the conductor is in the form of a coil, increasing the number of turns in the coil increases the total magnetic flux linkage, resulting in a larger induced e.m.f. Each turn of the coil experiences the change in flux, and the induced e.m.f. in each turn adds up.
- **Orientation of the Conductor with Respect to the Magnetic Field:** The induced e.m.f. is maximum when the motion of the conductor is perpendicular to the magnetic field lines. If the motion is parallel to the field lines, there is no change in magnetic flux linkage, and no e.m.f. is induced.
- **Area of the Coil Exposed to the Magnetic Field:** A larger area of the coil exposed to a changing magnetic field will experience a greater change in magnetic flux linkage, leading to a larger induced e.m.f.

f) Applications of Electromagnetic Induction in Day-to-Day Life:

Electromagnetic induction is the fundamental principle behind many important technologies that we use daily:

- ✓ **Electricity Generation (Generators and Dynamos):** These devices convert mechanical energy into electrical energy by rotating coils of wire in a magnetic field or rotating magnets around coils, inducing an e.m.f. and current. This is how most of the electricity we use is produced.
- ✓ **Transformers:** These devices are used to step up or step down AC voltages. They work based on the principle of mutual induction between two coils linked by a changing magnetic flux in a core.
- ✓ **Electric Motors:** While the reverse of a generator, the operation of electric motors relies on the magnetic forces produced by currents, which are often related to electromagnetic induction principles in their design and control.
- ✓ **Wireless Charging:** Devices like smartphones can be charged wirelessly using inductive charging, where a changing magnetic field from a transmitting coil induces a current in a receiving coil in the phone.
- ✓ **Metal Detectors:** These devices use electromagnetic induction to detect the presence of metallic objects. A changing magnetic field induces eddy currents in the metal, which in turn create their own magnetic field that is detected by the device.
- ✓ **Credit/Debit Card Readers:** Some card readers use magnetic induction to read the information stored on the magnetic stripe of a card.
- ✓ **Induction Cooktops:** These cooktops use electromagnetic induction to directly heat the cookware placed on them. An alternating current in a coil beneath the surface creates a

changing magnetic field that induces eddy currents in the ferromagnetic cookware, causing it to heat up.

- ✓ **Anti-theft Systems:** Some store security systems use electromagnetic induction to detect tags attached to merchandise.