
ESSENCE STATEMENT

The Computer Science curriculum at Senior School aims to equip a learner with competencies, skills and attitudes

in computing principles, concepts and techniques. The competencies acquired will enable a learner to design,

implement and manage computing systems that provide social, economic, industrial and technological solutions for

national development. The curriculum design encompasses theoretical and practical aspects of foundations of

computer science, computer networking and software development. These aspects will equip a learner with

problem-solving, critical thinking and analytical skills through learner centred, experiential and inquiry-based

learning approaches. The curriculum design is intended for a learner who would like to pursue a professional career

in Computer Science or related disciplines.

This learning area is anchored on National Goals of Education No. 2 which aims to provide the learners with the

necessary skills and attitudes for industrial development, Kenya Vision 2030 on making education responsive to

education needs, Sessional Paper No 1 of 2019, which recommended the promotion of technical and vocational

education with an emphasis on Science, Technology, and Innovation (ST&I) in the school curriculum. It is also

informed by the second pillar of Africa Agenda 2063 and the National ICT Policy of Kenya 2016 (revised 2020),

which emphasises on use of ICT as a foundation for the creation of a more robust economy.

GENERAL SUBJECT LEARNING OUTCOMES

By the end of Senior Secondary School, the learner should be able to:

a) Use knowledge, skills and values acquired in computer science to perform daily life activities.

 b) Practise ethical and safe use of computer technology in society.

c) Develop computer applications for solving real world problems.

d) Configure and manage computer networks for effective resource sharing.

 e) Initiate career and entrepreneurship opportunities in the field of computer science.

f) Adapt to the dynamic digital world to cope with the changing needs of the society.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

SUMMARY OF STRANDS AND SUB STRANDS

1.0 FOUNDATION OF COMPUTER SCIENCE

1.1 Evolution of Computers

1.2 Computer Architecture

1.3 Input/Output (I/O) Devices

1.4 Computer storage

1.5 Central Processing Unit (CPU)

1.6 Operating System (OS)

1.7 Computer setup

2.0 COMPUTER NETWORKING

2.1 Data communication

2.2 Data Transmission Media

2.3 Computer Network Elements

2.4 Network Topologies

3.0: SOFTWARE DEVELOPMENT

3.1 Computer Programming Concepts

3.2 Program development

3.3 Identifiers and Operators

3.4 Control Structures

3.5 Containers

3.6 Functions

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

STRAND 1.0: FOUNDATION OF COMPUTER SCIENCE

SUB-STRAND 1.1: EVOLUTION AND DEVELOPMENT OF COMPUTERS

1.1.1 Early Computing Devices (Relating to Electronic Computers)

These early tools, though not electronic, introduced fundamental concepts in computation and paved the way for the

development of modern computers.

(a) Ancient and Medieval Computing Devices:

 Abacus (Around 2400 BC):

Description: A manual calculating tool consisting of beads arranged on rods or wires, representing place values.

Operators manipulate the beads to perform arithmetic operations.

(Simplified Abacus Representation)

An image showing a traditional abacus with beads on rods.

 Relation to Evolution: Introduced the concept of representing numbers using physical objects and

performing calculations through manipulation, a basic form of data processing.

 Napier's Bones (Early 17th Century):
 Description: A set of numbered rods used for multiplication and division. The rods contained pre-

calculated multiples of numbers, simplifying complex calculations.

Image:

 An illustration of a set of Napier's Bones.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Relation to Evolution: Demonstrated the idea of using pre-calculated information and structured

tools to simplify complex mathematical tasks, a step towards automation.

 Pascaline (1642):
 Description: The first mechanical calculator capable of addition and subtraction. It used a system of

gears and dials to represent numbers and perform calculations automatically.

A photograph of Blaise Pascal's mechanical calculator, the Pascaline.

 Relation to Evolution: Marked a significant step towards automated calculation using mechanical

principles, a precursor to the electromechanical devices.

 Slide Rule (Around 1620):
 Description: An analog computer used primarily for multiplication and division, and also for

functions such as roots, logarithms, and trigonometry. It uses two logarithmic scales that slide against

each other.

Difference Engine (Early 19th Century):

 Description: A mechanical calculator designed by Charles Babbage to automatically calculate

polynomial functions. It was intended to produce accurate mathematical tables, eliminating errors

from manual calculation.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Difference Engine No. 1.

 Relation to Evolution: Introduced concepts like automated computation based on a program (though

fixed), mechanical memory for intermediate results, and the idea of a machine performing complex

tasks autonomously.

 Analytic Engine (Mid-19th Century):
 Description: Also designed by Charles Babbage, this was a more ambitious general-purpose

mechanical computer. It included components analogous to a modern computer: an arithmetic unit

("mill"), a control unit, memory ("store"), and input/output mechanisms (based on punched cards).

Although never fully built in Babbage's lifetime, its design was revolutionary.

A diagram illustrating the conceptual architecture of the Analytic Engine.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Relation to Evolution: Considered the theoretical precursor to the modern digital computer. It

introduced the fundamental architectural concepts of input, processing, storage, and output, along

with the idea of programmable computation. Ada Lovelace is considered the first computer

programmer for her work on the Analytic Engine.

 Jacquard Loom (Early 19th Century):
 Description: A mechanical loom that used punched cards to control the weaving of intricate patterns

in textiles automatically. The holes in the cards determined which warp threads were raised or

lowered for each pass of the shuttle.

A close-up of the mechanism of a Jacquard Loom using punched cards.

 Relation to Evolution: Introduced the concept of using punched cards as a form of programmable

instruction and data storage, which later influenced input methods for early computers.

1.1.2 Principle Technologies Defining Computer Development

The evolution of computers is marked by breakthroughs in fundamental electronic technologies.

(b) Principle Technologies:

 Vacuum Tubes (Early to Mid-20th Century):
 Description: Electronic devices that control the flow of electric current in a high vacuum between

electrodes. They were used as switches and amplifiers in the first generation of electronic computers.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A schematic diagram of a triode vacuum tube.

 Impact: Enabled the development of electronic computers by providing a way to perform

calculations electronically. However, they were large, consumed a lot of power, generated significant

heat, and were unreliable due to frequent burnouts.

 Transistors (Mid-20th Century):
 Description: Semiconductor devices that can switch and amplify electronic signals. They replaced

vacuum tubes due to their smaller size, lower power consumption, less heat generation, higher speed,

and greater reliability.

A photograph of a small transistor.

 Impact: Ushered in the second generation of computers, making them smaller, faster, more energy-

efficient, and more reliable. This was a crucial step towards the personal computer era.

 Integrated Circuits (ICs) - Small Scale Integration (SSI) and Medium Scale Integration (MSI) (Late

20th Century):
 Description: A single semiconductor chip containing many interconnected electronic components

(transistors, resistors, capacitors, etc.). SSI typically contained a few transistors, while MSI contained

hundreds.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A photograph of a Dual In-line Package (DIP) integrated circuit.

 Impact: Led to the third generation of computers. ICs further reduced the size, cost, and increased

the speed and efficiency of computers. More complex circuits could be manufactured on a single

chip, leading to more powerful machines.

 Large Scale Integration (LSI) and Very Large Scale Integration (VLSI) (Late 20th Century -

Present):
 Description: Advanced IC technologies that allowed for the integration of thousands (LSI) and then

millions (VLSI) of transistors onto a single chip. Microprocessors (the entire CPU on a single chip)

became possible with VLSI.

A photograph of an Intel 486DX2 microprocessor chip.

 Impact: Revolutionized computing, leading to the development of powerful microprocessors,

personal computers, laptops, and eventually the smartphones and tablets we use today. VLSI

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

continues to drive miniaturization, increased processing power, and reduced costs in modern

electronics (fourth and fifth generations).

1.1.3 Computer Generations and Principle Technologies

Each generation of computers is characterized by the dominant technology used in their construction.

(c) Relating Principle Technologies to Computer Generation:

Generation Approximate

Period

Principal Technology Key Characteristics Examples

First 1940s - 1950s Vacuum Tubes Large size, high power

consumption, significant

heat, low reliability, slow

speed.

ENIAC, UNIVAC I

Second 1950s - 1960s Transistors Smaller size, lower power

consumption, less heat,

higher reliability, faster

speed.

IBM 1401, PDP-1

Third 1960s - 1970s Integrated Circuits

(SSI/MSI)

Further reduction in size

and cost, increased speed

and efficiency, more

reliable.

IBM System/360, DEC

PDP-8

Fourth 1970s -

Present
Large Scale Integration

(LSI) & Very Large Scale

Integration (VLSI)

Microprocessors, personal

computers, high

processing power, small

size, low cost.

Apple Macintosh, IBM

PC, Modern Laptops

and Desktops

Fifth Present and

Beyond
Artificial Intelligence,

Parallel Processing,

Superconductors,

Quantum Computing

Focus on AI, parallel

processing, natural

language understanding,

advanced computing.

AI systems,

Supercomputers,

Quantum Computers

(in development)

1.1.4 Technological Advancement in Computer Development

(d) Appreciating Technological Advancement:

The progression through computer generations demonstrates remarkable technological advancement:

 Miniaturization: Computers have shrunk from room-sized machines to handheld devices, thanks to the

increasing density of integrated circuits.

 Increased Processing Power: Each new technology has enabled faster and more complex calculations,

leading to the powerful computing capabilities we have today.

 Improved Efficiency: Newer technologies consume less power and generate less heat, making computers

more energy-efficient and reliable.

 Reduced Cost: Mass production of advanced components like microprocessors has significantly lowered

the cost of computing, making it accessible to a wider population.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Enhanced Reliability: Solid-state components like transistors and integrated circuits are far more reliable

than their predecessors, leading to fewer hardware failures.

 New Capabilities: The advancements have paved the way for entirely new applications and fields, such as

the internet, multimedia, artificial intelligence, and data science.

SUB-STRAND 1.2: COMPUTER ORGANISATION AND ARCHITECTURE

1.2.1 Von Neumann Computer Architecture

The von Neumann architecture is a computer architecture based on a description by the mathematician and physicist

John von Neumann and others in the "First Draft of a Report on the EDVAC" (1945). It is the foundation of most

modern computers.

(a) Functional Organisation of a von Neumann Computer:

A von Neumann architecture has five main functional units:

1. Input Unit: Devices used to feed data and instructions into the computer. Examples include the keyboard,

mouse, scanner, microphone, etc.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A diagram showing various input devices.

2. Central Processing Unit (CPU): The "brain" of the computer, responsible for executing instructions. It

consists of two main parts:

 Arithmetic Logic Unit (ALU): Performs arithmetic calculations (addition, subtraction,

multiplication, division) and logical operations (AND, OR, NOT).

 Control Unit (CU): Manages and coordinates all the activities of the computer. It fetches

instructions from memory, decodes them, and sends control signals to other units to execute them.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A simplified block diagram of a Central Processing Unit.

3. Memory Unit: Stores data and instructions that are currently being processed or will be processed. In a von

Neumann architecture, a single address space is used for both instructions and data. This is a key

characteristic.

 Main Memory (RAM): Random Access Memory - volatile memory that stores data and instructions

actively being used.

 Secondary Storage (Hard Disk, SSD): Non-volatile memory used for long-term storage of data and

programs.

A picture of a RAM module.

4. Output Unit: Devices that display or present the processed information to the user. Examples include the

monitor, printer, speakers, etc.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A diagram showing various output devices.

5. Buses: Sets of electrical conductors that transmit data, addresses, and control signals between the different

components of the computer. There are three main types of buses:

 Data Bus: Carries data between the CPU, memory, and other peripherals.

 Address Bus: Carries the memory addresses from the CPU to the memory to specify the location

being accessed.

 Control Bus: Carries control signals from the control unit to other components to coordinate their

actions.

A diagram illustrating the data, address, and control buses.

(b) Relationships Among Functional Elements:

The functional elements work together in a coordinated manner to execute programs:

1. Input: The user provides data and instructions through input devices.

2. Storage: The input data and instructions are stored in the memory unit.

3. Processing:
 The Control Unit (CU) fetches instructions from the memory.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 The CU decodes the instruction.

 The CU sends control signals to the Arithmetic Logic Unit (ALU) and other components.

 The ALU performs the arithmetic or logical operations on the data fetched from memory.

 The results are stored back in the memory.

4. Output: The processed information (results) is retrieved from the memory and sent to the output unit to be

displayed or presented to the user.

5. Communication via Buses: All these operations rely on the buses for transferring data, addresses of

memory locations, and control signals between the different units.

(c) Model of a Computer Architecture:

You can create a simple model using locally available materials like cardboard, wires, and labels to represent the

different components and their connections.

 Cardboard boxes/sections: Represent the CPU, Memory Unit, Input Unit, and Output Unit.

 Wires/drawn lines: Represent the data bus, address bus, and control bus connecting the components.

 Labels: Clearly label each component (CPU, ALU, CU, Memory, Input, Output) and the buses.

 Arrows: Indicate the direction of data flow and control signals.

A basic block diagram representing the von Neumann architecture.

1.2.2 Data Representation in a Von Neumann Computer

Digital computers, based on the von Neumann architecture, use binary numbers to represent all types of data and

instructions. Other number systems like octal and hexadecimal are often used as a more human-readable shorthand

for binary.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

(d) Using Binary, Octal, and Hexadecimal Number Systems:

 Binary Number System (Base-2):
 Uses only two digits: 0 and 1 (bits).

 The fundamental language of computers because electronic circuits can easily represent these two

states (on/off, high/low voltage).

 Conversion from Base-10 to Binary: Repeatedly divide the decimal number by 2 and record the

remainders in reverse order.

Example:

Convert 13 (base-10) to binary: 13 ÷ 2 = 6 remainder 1 6 ÷ 2 = 3 remainder 0 3 ÷ 2 = 1 remainder 1 1 ÷ 2 = 0

remainder 1 So, 13₁₀ = 1101₂

 Conversion from Binary to Base-10: Multiply each bit by the corresponding power of 2 and sum

the results.

Example:

Convert 10110₂ to base-10: (1 × 2⁴) + (0 × 2³) + (1 × 2²) + (1 × 2¹) + (0 × 2⁰) = 16 + 0 + 4 + 2 + 0 = 22₁₀

 Octal Number System (Base-8):
 Uses eight digits: 0, 1, 2, 3, 4, 5, 6, 7.

 Often used as a shorthand for binary because each octal digit can be represented by exactly three

binary digits.

 Conversion from Base-10 to Octal:

 Repeatedly divide the decimal number by 8 and record the remainders in reverse order.

Example:

Convert 26 (base-10) to octal: 26 ÷ 8 = 3 remainder 2 3 ÷ 8 = 0 remainder 3 So, 26₁₀ =

32<0xE2><0x82><0x88>

 Conversion from Octal to Base-10:

 Multiply each digit by the corresponding power of 8 and sum the results.

Example: Convert 45<0xE2><0x82><0x88> to base-10: (4 × 8¹) + (5 × 8⁰) = 32 + 5 = 37₁₀

 Conversion between Binary and Octal: Group binary digits in threes from the right and convert

each group to its octal equivalent.

Example: Binary 110101₂ to octal: Group: 110 101 Octal: 6 5 => 65<0xE2><0x82><0x88>

 Hexadecimal Number System (Base-16):

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Uses sixteen symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F (where A=10, B=11, C=12, D=13,

E=14, F=15).

 Widely used in computing to represent memory addresses and data in a more compact and human-

readable form than binary. Each hexadecimal digit can be represented by exactly four binary digits.

 Conversion from Base-10 to Hexadecimal: Repeatedly divide the decimal number by 16 and

record the remainders (converting remainders 10-15 to A-F) in reverse order.

Example: Convert 42 (base-10) to hexadecimal: 42 ÷ 16 = 2 remainder 10 (A) 2 ÷ 16 = 0 remainder

2 So, 42₁₀ = 2A₁₆

 Conversion from Hexadecimal to Base-10: Multiply each digit by the corresponding power of 16

and sum the results.

Example: Convert 1F₁₆ to base-10: (1 × 16¹) + (F × 16⁰) = (1 × 16) + (15 × 1) = 16 + 15 = 31₁₀

 Conversion between Binary and Hexadecimal: Group binary digits in fours from the right and

convert each group to its hexadecimal equivalent.

Example: Binary 11110010₂ to hexadecimal: Group: 1111 0010 Hex: F 2 => F2₁₆

 Table Summarizing Number Systems:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 (e) Importance of Computer Architecture in Computing:

Computer architecture plays a crucial role in determining the performance, efficiency, and capabilities of a

computer system.

 Performance: The architecture, including the design of the CPU, memory hierarchy, and bus system,

directly impacts how quickly instructions are executed and data is processed.

 Efficiency: A well-designed architecture optimizes the use of resources like power and memory, leading to

more energy-efficient systems.

 Functionality: The architecture dictates the types of instructions the computer can execute and the way it

handles data, influencing the software that can run on it.

 Scalability: A good architecture allows for easier upgrades and expansion of the system.

 Cost: Different architectural choices can affect the cost of manufacturing and ultimately the price of the

computer.

SUB-STRAND 1.3: INPUT/OUTPUT (I/O) DEVICES

1.3.1 Types of Input Devices

Input devices are hardware peripherals used to send data and control signals to a computer for processing.

(a) Types of Input Devices:

 Keying Devices: These devices allow users to input data by pressing keys.

o Keyboard: The most common input device, used to enter text, numbers, and commands by pressing

keys corresponding to letters, numbers, symbols, and functions.

A picture of a standard computer keyboard.

o Numeric Keypad: A smaller set of keys, usually on the right side of a keyboard, used for efficient

numeric data entry.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A close-up of a numeric keypad.

 Pointing Devices: These devices control the movement of a cursor or pointer on the screen to make

selections and interact with graphical user interfaces (GUIs).

o Mouse: A handheld device that detects motion relative to a surface. Buttons on the mouse allow for

clicking, double-clicking, and dragging. Some mice have a scroll wheel for vertical scrolling.

!

o Trackball: A stationary device with a ball that the user rotates to move the cursor.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Surface found on laptops. Users move their fingers across the surface to control the cursor.

o Joystick: A stick that pivots on a base and reports its angle or direction to the device it is controlling.

Commonly used for gaming.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A picture of a computer joystick.

o Light Pen: A light-sensitive stylus used to point at objects on a CRT monitor.

An illustration of a light pen.

 Scanning Devices: These devices convert physical documents or objects into digital images.

o Scanner (Flatbed Scanner): A device that scans documents or photos placed on a glass bed.

Flatbed scanner.

o Barcode Reader: An optical scanner that reads barcodes (a series of parallel lines representing data).

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A picture of a handheld barcode reader scanning a barcode.

o Quick Response (QR) Code Reader: A device or software that scans QR codes (two-dimensional

barcodes) containing various types of information (URLs, text, contact details). Smartphones often

have built-in QR code readers.

o Two-Dimensional (2D) Scanner: Scans flat objects and captures data in two dimensions (length and

width). Flatbed scanners are a common type.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

o Three-Dimensional (3D) Scanner: Captures the shape and size of a physical object in three

dimensions (length, width, and depth), creating a digital 3D model.



An illustration of a 3D scanner scanning an object.

 Voice Input Devices: These devices allow users to input data or commands using their voice.

o Microphone: Converts sound waves into electrical signals that can be processed by a computer.

Often used with speech recognition software.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Touch Screens: Display screens that are also sensitive to touch, allowing users to interact directly with the

displayed content using their fingers or a stylus.

o Resistive Touch Screen: Consists of layers of electrically conductive material. Pressure on the

screen causes these layers to touch, registering the input. Less sensitive to light scratches but requires

actual physical pressure.

A cross-section diagram of a resistive touch screen.

o Capacitive Touch Screen: Uses a layer of conductive material that creates an electrical field. Touch

from a finger (which is also conductive) disrupts this field, and the location of the touch is detected.

More sensitive and supports multi-touch but can be affected by gloves.

A simplified diagram of a capacitive touch screen.

o Infra-red (IR) Touch Screen: Uses infrared beams and sensors around the edges of the screen.

When the screen is touched, the beams are interrupted, and the sensors detect the location of the

break. Good optical clarity but can be affected by dust or debris.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A conceptual diagram of an infrared touch screen.

 Digitizer (Graphics Tablet): A flat surface on which the user draws or writes using a stylus. The tablet

converts the pen movements into digital signals. Often used for graphic design and digital art.

A picture of a graphics tablet with a stylus.

 Digital Cameras: Capture still images and videos digitally. These can then be transferred to a computer for

editing, storage, or sharing.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

1.3.2 Types of Output Devices

Output devices display, print, or otherwise present information processed by the computer to the user.

(a) Types of Output Devices:

 Monitors: Display visual information from the computer.

o CRT (Cathode Ray Tube) Monitor: Older technology that uses electron beams to create images on

a fluorescent screen. Bulky and power-hungry.

A picture of an old CRT monitor.

o LCD (Liquid Crystal Display) Monitor: Uses liquid crystals to control the passage of light and

create images. Thinner and more energy-efficient than CRTs.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A picture of a modern LCD monitor.

o LED (Light Emitting Diode) Monitor: A type of LCD monitor that uses LEDs for backlighting,

offering better energy efficiency and color accuracy.

A picture of an LED monitor.

 Printers: Produce hard copies (printed documents) of digital information.

o Inkjet Printer: Sprays tiny droplets of ink onto paper to create images and text. Suitable for home

and small office use, good for color printing.

A picture of an inkjet printer.

o Laser Printer: Uses a laser beam to create an electrostatic image on a drum, which then attracts

toner (powdered ink). The toner is transferred to paper and fused by heat. Faster and more cost-

effective for high-volume black and white printing.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s



A picture of a laser printer.

o Dot Matrix Printer: Uses a print head containing pins that strike an ink ribbon to create characters

as a series of dots. Older technology, noisy, but can print on multi-part forms.



A picture of a dot matrix printer.

 Speakers: Produce audio output from the computer.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A picture of a pair of computer speakers.

 Projectors: Display computer output onto a large screen or wall, suitable for presentations and home

theaters.

A picture of a digital projector.

 Plotters: Specialized output devices used for printing large-format graphics, such as architectural drawings

and engineering designs.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A picture of a large-format plotter.

 Actuator: An output device that produces physical movement based on signals from the computer. Used in

robotics, automation, and control systems. Examples include motors, solenoids, and robotic arms.

 A picture of a robotic arm, illustrating an actuator in action.

1.3.3 Operation of Input and Output Devices

(b) Methods of Data Entry and Information Output:

 Methods Used by Input Devices to Enter Data:
o Manual Keying: Users type data using keyboards or numeric keypads.

o Pointing and Clicking: Users use mice, trackballs, or touchpads to select options and interact with

the GUI.

o Scanning: Devices like scanners and barcode readers convert physical information into digital data.

o Voice Recognition: Microphones capture audio, and speech recognition software converts it into

text or commands.

o Touch Input: Touch screens detect physical contact to register selections and gestures.

o Digital Image Capture: Digital cameras and video cameras convert visual information into digital

formats.

o Stylus Input: Digitizers and touch screens with styluses allow for precise drawing and handwriting

input.

o QR Code Scanning: QR code readers decode the information embedded in QR codes.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

SUB-STRAND 1.4: COMPUTER STORAGE

1.4.1 Types and Categories of Computer Storage

Computer storage refers to the various ways data and instructions are held within a computer system.

(a) Identify Types of Storage:

Learners likely have experience with various storage devices such as:

 USB flash drives

 Memory cards (SD cards)

 Hard disk drives (in desktop computers)

 Solid-state drives (in newer laptops and desktops)

 CDs and DVDs

 Cloud storage (like Google Drive, Dropbox)

(b) Categorise Types of Storage:

Computer storage is broadly categorised into two main types:

1. Primary Storage (Main Memory): This is the computer's main workspace. It is directly accessible by the

CPU and holds the data and instructions that the CPU is currently processing. Primary storage is typically

volatile, meaning data is lost when the power is turned off.

o RAM (Random Access Memory): The primary working memory of the computer. It allows data to

be read and written quickly, enabling the CPU to access information rapidly.

 Types of RAM Technology:
 DRAM (Dynamic RAM): Stores each bit of data in a separate capacitor within an

integrated circuit. It needs to be periodically refreshed (re-written) to maintain the

data because capacitors leak their charge over time. DRAM is cheaper and has higher

storage capacities compared to SRAM.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A simplified diagram of a DRAM memory cell showing a transistor and a capacitor.

 SRAM (Static RAM): Stores each bit of data using a flip-flop circuit (a type of

latching circuit). SRAM does not need to be refreshed as long as power is supplied,

making it faster than DRAM. However, it is more expensive and has lower storage

capacities for the same physical size. SRAM is often used for CPU caches.

A simplified diagram of an SRAM memory cell showing transistors in a flip-flop configuration.

 Differences between DRAM and SRAM:

Feature DRAM (Dynamic RAM) SRAM (Static RAM)
Memory Cell 1 capacitor + 1 transistor 4-6 transistors (typically 6) forming a flip-flop
Data Storage Charge stored in a capacitor State of a flip-flop (transistor-based latch)
Refresh
Requirement

Requires periodic refreshing (hundreds of times per
second)

Does not require refreshing as long as power
is supplied

Speed Slower access time Faster access time
Power
Consumption

Lower power consumption (generally) Higher power consumption (especially during
active states)

Density Higher density (more bits per chip) Lower density (fewer bits per chip for the
same area)

Cost Less expensive per bit More expensive per bit
Complexity Simpler cell structure, but complex refresh circuitry More complex cell structure, simpler control

circuitry

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Size Smaller cell size Larger cell size
Latency Higher latency Lower latency
Usage Main memory (RAM) in computers, graphics memory

(as GDDR), etc.
Cache memory (L1, L2, L3) in CPUs, high-speed
buffers

Volatility Volatile (data lost when power is off) Volatile (data lost when power is off)
Data Retention Requires constant power and refreshing to retain

data
Retains data as long as power is supplied

Heat Generation Lower heat generation (generally) Higher heat generation (especially during
active states)

Scalability More scalable for large capacities Less scalable for very large capacities
Noise Sensitivity More susceptible to electrical noise Less susceptible to electrical noise

o ROM (Read-Only Memory): A type of memory that stores data permanently or semi-permanently.

The data in ROM is typically written during the manufacturing process and cannot be easily

modified or erased by the user during normal computer operation. ROM is non-volatile, meaning it

retains its data even when the power is off.

 Features of ROM Chips:
 Non-volatile: Retains data without power.

 Read-only (in most basic forms): Data cannot be easily altered.

 Contains essential software like the BIOS (Basic Input/Output System) which boots

the computer.

 Types of ROM Technology:
 PROM (Programmable ROM): Can be written to once after manufacturing using a

special device.

 EPROM (Erasable Programmable ROM): Can be erased by exposing it to strong

ultraviolet light and then reprogrammed.

 EEPROM (Electrically Erasable Programmable ROM): Can be erased and

reprogrammed electrically, making it more convenient than EPROM. Flash memory

(used in USB drives and SSDs) is a type of EEPROM.

 Differences between RAM and ROM Chips:

Feature RAM (Random Access Memory) ROM (Read-Only Memory)
Acronym RAM ROM
Full Form Random Access Memory Read-Only Memory
Volatility Volatile (data lost when power is off) Non-volatile (data retained when power is off)
Read/Write Read and Write operations Primarily Read operations (some types can be written to,

but not in typical use)
Primary Use Temporary storage for actively used data,

running applications, operating system
Permanent storage for boot instructions (BIOS/UEFI),
firmware

Data Access Random access (any memory location can be
accessed directly and quickly)

Random access (reading is generally fast)

Speed Faster read and write speeds Slower read speeds compared to RAM
Capacity Higher capacity (typically measured in GB) Lower capacity (typically measured in MB for basic ROM)
Cost More expensive per bit Less expensive per bit
Complexity More complex circuitry Simpler circuitry
Typical System memory slots on the motherboard Directly on the motherboard, in embedded systems

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Location
Modifiability Data can be easily written, modified, and

erased
Data is generally fixed after manufacturing (some types
can be reprogrammed with special procedures)

Data
Retention

Requires power to retain data Retains data even without power

Examples DDR4, DDR5 memory modules, SRAM, DRAM BIOS chip, firmware in embedded devices, older game
cartridges

ROM and RAM in Other Devices: ROM stores the firmware that controls the basic operations of devices like

microwave ovens (controls cooking cycles), refrigerators (controls temperature), and remote-controlled

toys/aeroplanes (controls movement and functions). RAM in these devices might be used for temporary data during

operation, though it's less prominent than in computers.

2. Secondary Storage (Auxiliary Storage): This is used for long-term storage of data and programs that are

not currently being used by the CPU. Secondary storage is typically non-volatile.

o Internal Secondary Storage: Storage devices located inside the computer case.

 Hard Disk Drive (HDD): A traditional storage device that uses magnetic platters to store

data. Data is read and written by read/write heads that move across the spinning platters.

An image showing the internal components of a hard disk drive, including

platters and read/write heads.

Solid State Drive (SSD): A newer type of storage device that uses flash memory chips to store data. SSDs have no

moving parts, making them faster, more durable, and more energy-efficient than HDDs.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s



An image showing the internal components of a solid-state drive, including controller and memory chips.

o External Secondary Storage: Storage devices that are connected to the computer externally.

 DVD/CD and DVD-RAM: Optical storage media that use lasers to read and write data on

discs. CDs have lower storage capacity than DVDs. DVD-RAM is a rewritable DVD format.

A cross-section diagram showing the layers of a CD/DVD.

 Blu-ray Disc: Another optical storage medium with a higher storage capacity than DVDs,

used for high-definition video and large data files.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A cross-section diagram showing the layers of a Blu-ray disc.

USB Memory Stick/Flash Memory: Small, portable storage devices that connect to a computer via a USB port.

They use flash memory for data storage.

A picture of a USB flash drive.

Removable Hard Drive: External hard disk drives that connect to a computer via USB or other interfaces. Offer

large storage capacities and portability.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A picture of an external hard drive connected to a computer.

(c) & (d) Reading and Writing Data:

 Reading Data: The process of accessing and retrieving information stored on a storage device.

 For magnetic media (HDD), read/write heads move to the correct location on the platter and sense

the magnetic patterns representing data.

 For optical media (CD/DVD/Blu-ray), a laser beam is directed at the disc, and the reflected light is

interpreted as data.

 For solid-state media (SSD/USB drive), electrical signals are used to access the data stored in the

flash memory cells.

 Writing Data: The process of storing information onto a storage device.

 For magnetic media (HDD), the read/write heads alter the magnetic orientation of the particles on the

platter's surface to represent data.

 For optical media (recordable discs), a laser beam burns or alters the reflective layer of the disc.

 For solid-state media (SSD/USB drive), electrical charges are applied to the flash memory cells to

store data.

(e) Criteria for Selecting Computer Storage:

When choosing a storage device, several factors need to be considered:

 Capacity: The amount of data the device can hold (measured in GB or TB).

 Speed: How quickly data can be read from and written to the device (important for performance). SSDs are

generally faster than HDDs.

 Portability: How easy it is to carry the device around (important for external storage). USB drives are very

portable, while internal HDDs are not.

 Durability/Robustness: How resistant the device is to physical damage (important for mobile use). SSDs

are more durable than HDDs due to the absence of moving parts.

 Cost: The price of the storage device per unit of storage (e.g., cost per GB). HDDs are generally cheaper per

GB than SSDs.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Security: Features related to data protection, such as encryption capabilities.

 Form Factor: The physical size and shape of the device, which must be compatible with the computer

system.

(f) Safety of Data in Computer Storage Media:

Protecting data stored on computer media is crucial. This involves:

 Physical Security: Protecting storage devices from physical damage, theft, or unauthorized access.

 Data Backup: Regularly creating copies of important data and storing them on separate storage devices or

in the cloud.

 Access Control: Using passwords, encryption, and permissions to control who can access the data.

 Data Encryption: Encoding data so that it is unreadable without the correct decryption key. This is

especially important for sensitive information and portable storage devices.

 Safe Removal: Properly ejecting external storage devices before physically disconnecting them to prevent

data corruption.

 Handling Precautions: Avoiding extreme temperatures, humidity, and magnetic fields that can damage

storage media.

1.4.2 Remote Storage (Cloud Storage)

Remote storage, often referred to as cloud storage, involves storing digital data on a network of servers, typically

managed by a third-party provider, rather than directly on your computer or local storage device.

 Meaning of Remote Storage: Data is stored on distant servers and accessed via the internet. Users can

upload, download, and manage their files from any device with an internet connection.

 Examples of Remote Storage:
 Google Drive

 Dropbox

 Microsoft OneDrive

 iCloud

 Amazon S3

 Saving and Retrieving Data from Remote Storage: Users typically use web browsers or dedicated

applications to upload (save) files to the remote servers and download (retrieve) them.

 Safety of Data in Remote Computer Storage (Key Inquiry Question):

The safety of data in remote storage is usually guaranteed through a combination of measures implemented

by the service providers:

 Encryption: Data is often encrypted both during transmission (when uploading or downloading) and

at rest (while stored on the servers). This makes it difficult for unauthorized individuals to access the

data even if they intercept it or gain access to the servers.

 Redundancy: Data is typically replicated across multiple servers and even different data centers.

This ensures that if one server or location experiences a failure, the data remains accessible from

other locations.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Physical Security of Data Centers: Data centers where the servers are housed have stringent

physical security measures, including surveillance, access control, and environmental controls.

 Access Control and Authentication: Users are required to authenticate their identity (e.g., with

usernames and passwords, multi-factor authentication) before they can access their data. Providers

also implement access controls to ensure that users can only access their own data.

 Security Protocols and Firewalls: Robust security protocols and firewalls are used to protect the

servers and the data from cyber threats, such as hacking and malware.

 Compliance and Certifications: Reputable cloud storage providers often adhere to industry

standards and certifications related to data security and privacy.

 Regular Backups: Providers typically perform regular backups of the data stored on their servers,

allowing for recovery in case of data loss.

 Terms of Service and Privacy Policies: Users should review the provider's terms of service and

privacy policies to understand how their data is handled and protected.

 Advantages and Disadvantages of Different Types of Secondary Storage:

Storage Type Advantages Disadvantages
HDD (Hard
Disk Drive)

High capacity, relatively low cost per GB Slower speed (read/write), less durable (susceptible to
mechanical failure), higher power use, generates noise

SSD (Solid
State Drive)

Very fast speed (read/write), highly durable
(no moving parts), lower power consumption,
silent operation, lower latency

More expensive per GB, lower capacity compared to
HDDs for the same price (at the same price point), write
endurance limitations (though improving)

CD/DVD Portable, inexpensive for distribution Low storage capacity, susceptible to scratches, relatively
slow read speeds

Blu-ray Disc High storage capacity, suitable for HD video Less universally compatible than DVDs/CDs, read/write
drives can be more expensive, slower write speeds
compared to HDDs/SSDs

USB Flash
Drive

Very portable, relatively fast (USB 3.0+),
durable (no moving parts), plug-and-play

Limited capacity compared to HDDs/SSDs, easily lost,
write endurance limitations (though less of a concern for
typical use)

Removable
Hard Drive

High capacity, portable Less durable than SSDs, requires external power in some
cases, slower speed compared to internal HDDs/SSDs

Remote
(Cloud)
Storage

Accessibility from anywhere with internet,
automatic backups, collaboration features,
scalability

Requires internet connection, security and privacy
concerns, subscription costs, dependence on third-party
providers, potential latency issues

 Benefits of Remote Storage vs. Local Computer Storage:

Feature Remote Storage Local Computer Storage
Accessibility Accessible from any device with internet Accessible only from the device or local network
Data Backup Often automatic and redundant Requires manual setup and management
Collaboration Easy sharing and collaboration on files More complex sharing
Data Security Provided by the service provider (can be

robust)
User responsibility (can be vulnerable)

Scalability Easy to increase storage capacity as needed Requires purchasing and installing new hardware
Device
Independence

Data not tied to a specific physical device Data tied to the local device

Cost Subscription fees may apply Initial hardware cost

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Internet Needed Requires internet connection for access No internet needed for access
Control Less direct control over physical storage Full control over physical storage
Disaster Recovery Often built-in redundancy and recovery

options
User responsibility for implementing recovery
strategies

Maintenance Handled by the service provider User responsibility for hardware and software
maintenance

Synchronization Automatic syncing across multiple devices Requires manual syncing or third-party solutions

 Safety Precautions When Handling Computer Storage:
 Handle storage devices gently to avoid physical damage.

 Keep storage devices away from extreme temperatures, humidity, and strong magnetic fields.

 Use antivirus software to protect against malware that can

SUB-STRAND 1.5: CENTRAL PROCESSING UNIT (CPU)

1.5.1 Structural Elements of the CPU

The Central Processing Unit (CPU) is the core component of a computer that interprets and executes instructions. It

is often referred to as the "brain" of the computer.

(a) Describe Structural Elements of the CPU:

The CPU primarily consists of the following key structural elements:

 Arithmetic and Logic Unit (ALU): This is the part of the CPU that performs arithmetic calculations

(addition, subtraction, multiplication, division) and logical operations (AND, OR, NOT, comparisons).

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A simplified block diagram of an ALU showing inputs, control signals, and output.

 Control Unit (CU): This component manages and coordinates all the activities within the CPU and the rest

of the computer system. It fetches instructions from memory, decodes them, and generates control signals to

direct other components.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

the Control Unit's interaction with memory, ALU, registers, and system buses.

 Registers: These are small, high-speed storage locations within the CPU used to temporarily hold data and

instructions that are being actively processed. Different types of registers have specific purposes:

* Program Counter (PC): Holds the address of the next instruction to be executed.

o Instruction Register (IR): Holds the current instruction that is being decoded and executed.

o Memory Address Register (MAR): Holds the address of a memory location to be accessed.

o Memory Data Register (MDR): Holds the data being transferred to or from memory.

o Accumulator: A register used to store intermediate results of calculations.

o General-Purpose Registers: Registers available for general use by the programmer to store

operands and results.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s



+-----+ +-----+ +-----+ +-----+ +-----+ ...

| PC |---| IR |---| MAR |---| MDR |---| ACC | ... (Other Registers)

+-----+ +-----+ +-----+ +-----+ +-----+

A conceptual diagram showing various registers within the CPU.

 Buses (Internal Buses): These are sets of electrical conductors within the CPU that facilitate the transfer of

data, addresses, and control signals between the different internal components (ALU, CU, Registers).

o Data Bus (Internal): Carries data between registers and the ALU.

o Address Bus (Internal): Carries addresses of data within the CPU (e.g., register addresses).

o Control Bus (Internal): Carries control signals between the CU and other internal components.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A simplified diagram showing the internal buses connecting the CPU components.

(b) Relate Structural Elements of the CPU to their Functions:

 ALU: Performs the actual computations and logical operations required by the instructions. Without the

ALU, the CPU could not process data.

 Control Unit: Acts as the "director" of the CPU and the entire system. It ensures that instructions are

fetched in the correct order, decoded properly, and executed by the appropriate components at the right time.

 Registers: Provide fast, temporary storage for data that the CPU needs to access and process quickly. They

reduce the need to constantly access slower main memory, significantly speeding up processing.

 Internal Buses: Act as communication pathways within the CPU, allowing the different components to

exchange data, addresses, and control signals efficiently.

1.5.2 The Fetch-Decode-Execute Cycle

The CPU executes instructions in a repetitive sequence known as the fetch-decode-execute cycle.

 Fetch: The Control Unit retrieves the next instruction from the main memory. The address of this instruction

is held in the Program Counter (PC). The instruction is then loaded into the Instruction Register (IR). The

PC is incremented to point to the next instruction in sequence.

 Decode: The Control Unit interprets the instruction in the IR to determine what operation needs to be

performed and what operands (data) are involved.

 Execute: The Control Unit sends signals to the ALU and other relevant components to perform the

operation specified by the instruction. This may involve arithmetic or logical operations, data transfers

between registers and memory, or control flow changes.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A simplified

flowchart illustrating the Fetch-Decode-Execute cycle.

 Interaction between CPU, Registers, and Memory during the Cycle:
1. Fetch: The CU uses the address in the PC to fetch the instruction from memory via the system buses

and stores it in the IR. The PC is updated.

2. Decode: The CU examines the instruction in the IR. If operands are needed from memory, the CU

uses the MAR to hold the memory address and the MDR to hold the data being fetched. Registers

within the CPU may also be identified as operands.

3. Execute: The CU directs the ALU to perform the operation using data from registers and/or the

MDR. The result is often stored back in a register or written to memory (using MAR and MDR).

1.5.3 Types of CPUs in Computing Devices

CPUs vary in their architecture and features depending on the intended use and performance requirements of the

computing device.

(c) Examine Types of CPUs:

 Instruction Set Architecture (ISA): Defines the set of instructions that a CPU can understand and execute.

o RISC (Reduced Instruction Set Computer): Uses a small and simple set of instructions, each

typically taking one clock cycle to execute. This can lead to faster overall execution when

instructions are pipelined effectively. Examples: ARM (used in most smartphones and tablets),

PowerPC.

o CISC (Complex Instruction Set Computer): Uses a large and complex set of instructions, some of

which can perform multiple low-level operations. This can make programming easier in some cases

but may lead to longer execution times for individual instructions. Example: Intel x86 (used in most

desktop and laptop PCs).

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Word Length: The number of bits that a CPU can process at one time. Common word lengths are:

o 16-bit: Older CPUs that could process 16 bits of data per cycle.

o 32-bit: More capable than 16-bit, allowing for larger memory addressing and more complex

operations.

o 64-bit: Current standard for most desktop and laptop CPUs, offering even greater memory

addressing capabilities and performance for demanding tasks.

 Core Design: A core is an independent processing unit within a CPU. Modern CPUs often have multiple

cores on a single chip (multi-core processors).

o Single-Core: Contains only one processing unit, so it can only execute one instruction at a time.

o Multi-Core: Contains two or more processing units on a single chip, allowing for parallel processing

(executing multiple instructions simultaneously), which can significantly improve performance,

especially for multitasking and multi-threaded applications.

 Dual-Core: Two processing cores.

 Quad-Core: Four processing cores.

 Hexa-Core: Six processing cores.

 Octa-Core: Eight processing cores.

 Deca-Core: Ten processing cores.

 CPUs can have even more cores (e.g., in server processors).

(d) Appreciate the Role of the CPU in Computing:

The CPU is the fundamental driving force behind all computing activities. It is responsible for:

 Executing Instructions: Running the software programs that allow us to perform tasks on a computer.

 Performing Calculations: Handling all the arithmetic and logical operations required by software.

 Controlling Hardware: Coordinating the activities of other hardware components through control signals.

 Managing Data Flow: Directing the movement of data between memory, input/output devices, and other

parts of the system.

Without a functioning CPU, a computer system cannot operate. Its performance directly impacts the speed and

responsiveness of the entire system.

1.5.4 Technological Advancements in CPUs

(Key Inquiry Question 1: What are the technological advancements in the development of CPUs?)

The development of CPUs has been marked by continuous and rapid technological advancements:

 Miniaturization (Moore's Law): The number of transistors that can be placed on an integrated circuit has

roughly doubled every two years, leading to smaller, more powerful, and more energy-efficient CPUs.

 Increased Clock Speed: The rate at which the CPU executes instructions (measured in GHz) has steadily

increased, leading to faster processing.

 Multi-Core Architecture: The introduction of multiple processing cores on a single chip has enabled

parallel processing and significantly improved performance for multitasking and multi-threaded

applications.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Cache Memory: The integration of high-speed cache memory within the CPU helps to reduce the time it

takes to access frequently used data and instructions, improving performance.

 Improved Instruction Set Architectures: Innovations in RISC and CISC architectures have led to more

efficient instruction execution.

 Advanced Manufacturing Processes: Improvements in semiconductor manufacturing techniques allow for

the creation of smaller transistors with better performance and lower power consumption.

 Specialized Processing Units: Modern CPUs often include specialized units for graphics processing

(integrated GPUs), artificial intelligence (AI accelerators), and other specific tasks.

 Power Efficiency: Continuous efforts to reduce the power consumption of CPUs are crucial for mobile

devices and energy conservation.

1.5.5 CPU Analogy to the Human Brain

(Key Inquiry Question 2: How does the CPU relate to the human brain?)

While the analogy is not perfect, there are some conceptual similarities between the CPU and the human brain:

 Processing Information: Both the CPU and the brain process information. The CPU processes digital data

and instructions, while the brain processes sensory input, thoughts, and memories.

 Control Center: The CPU acts as the central control unit for the computer, directing the activities of other

components. Similarly, the brain is the central control unit for the human body, coordinating various

functions.

 Memory: The CPU uses registers and interacts with main memory to store and retrieve information

temporarily. The brain has different types of memory (short-term, long-term) for storing information.

 "Execution" of Tasks: The CPU executes instructions to perform tasks. The brain directs the body to

perform actions based on thoughts and signals.

However, there are also significant differences:

 Complexity: The human brain is vastly more complex and has a far greater capacity for parallel processing

and learning than any current CPU.

 Structure: The brain has a highly interconnected neural network, while the CPU has a more structured and

hierarchical architecture.

 Functionality: The brain is capable of consciousness, emotions, creativity, and many other functions that

are beyond the capabilities of a CPU.

 Learning and Adaptation: The brain can learn and adapt in ways that are still being developed in artificial

intelligence for CPUs.

1.5.6 Factors to Consider When Selecting a CPU

When choosing a CPU for a computing device, several factors should be considered based on the intended use and

budget:

 Clock Speed (GHz): Generally, a higher clock speed means faster processing.

 Number of Cores: More cores are beneficial for multitasking and running multi-threaded applications.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Cache Size: A larger cache can improve performance by reducing the time it takes to access frequently used

data.

 Word Length (Bit): 64-bit CPUs are generally preferred for modern operating systems and applications.

 Instruction Set Architecture (RISC/CISC): The choice may depend on the specific software and

ecosystem.

 Integrated Graphics (GPU): If dedicated graphics are not needed, an integrated GPU can save cost and

power.

 Power Consumption (TDP): Important for battery life in laptops and heat management in desktops.

 Socket Compatibility: The CPU must be compatible with the motherboard socket.

 Price: CPUs vary significantly in price depending on their performance and features.

 Intended Use: Gaming, video editing, office work, etc., have different CPU requirements.

SUB-STRAND 1.6: OPERATING SYSTEM (OS) (12 Lessons)

An Operating System (OS) is a system software that manages computer hardware and software resources and

provides common services for computer programs. It acts as an intermediary between the user and the computer

hardware.

(a) Describe Functions of an Operating System:

The OS performs several crucial functions to ensure the smooth operation of a computer system:

 Booting: The process of starting up a computer. The OS initiates and manages this process, loading the

kernel (the core of the OS) into memory and initializing hardware components.

+---------+ +-----------+ +-----------+ +-----------+

| Power On|----->| BIOS/UEFI |----->| OS Loader |----->| Kernel |

+---------+ +-----------+ +-----------+ | Loaded |

 +-----------+

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A simplified flowchart of the computer booting process.

 Resource Management: The OS manages the computer's resources, including the CPU, memory,

input/output devices, and storage, ensuring that they are used efficiently and fairly by different applications.

+-

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A block diagram showing the OS managing various computer resources.

 User Interface (UI) or Command Interpreter: The OS provides a way for users to interact with the

computer. This can be through a graphical user interface (GUI) with icons and menus, or a command-line

interface (CLI) where users type commands.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A

simplified representation of a GUI with icons, menus, and a taskbar.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A screenshot of a command-line interface.

 Memory Management: The OS allocates and deallocates memory space for programs, ensuring that

different programs do not interfere with each other and that memory is used effectively. This includes

techniques like virtual memory.

A block diagram illustrating the OS managing memory for different applications.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Input/Output (I/O) Management: The OS controls the communication between the computer and its

peripheral devices (input and output devices). It handles requests from applications to use these devices and

ensures proper data transfer.

A block diagram showing the OS managing communication with input/output devices.

 File Management: The OS organizes and manages files and folders on storage devices. It provides

functionalities for creating, deleting, renaming, copying, moving, and securing files. It also maintains the file

system structure.

A block diagram illustrating the OS managing files and folders on a storage device.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Process Management: The OS manages the execution of programs (processes). It allocates CPU time and

other resources to processes, schedules their execution, and handles process synchronization and

communication.

Diagram:

+-----------------+

| OS (Process |

| Manager) |

+-----------------+

 / | \

 / | \

+-----+ +-----+ +-----+

| P1 | | P2 | | P3 | (Running Processes)

+-----+ +-----+ +-----+

A block diagram showing the OS managing multiple running processes.

 User Management: In multi-user systems, the OS manages user accounts, permissions, and security,

ensuring that each user has a secure and personalized computing environment.

Diagram:

+-----------------+

| OS (User |

| Manager) |

+-----------------+

 / | \

 / | \

+-----+ +-----+ +-----+

| User| | User| | User|

| 1 | | 2 | | 3 | (With Different Permissions)

+-----+ +-----+ +-----+

A block diagram illustrating the OS managing multiple users with different access levels.

1.6.2 Classification of Operating Systems

(b) Classify Operating Systems According to Different Attributes:

Operating systems can be classified based on several characteristics:

 According to Tasks:
 Single-tasking OS: Allows only one program to run at a time. Examples: Older mobile phone OS,

some embedded systems.

Image:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

+-------+

| OS |-----> [Running Program]

+-------+

A simple diagram showing the OS running one program at a time.

Multi-tasking OS: Allows multiple programs to run concurrently. The OS rapidly switches between

programs, giving the illusion of simultaneous execution. Most modern OS are multi-tasking.

Examples: Windows, macOS, Linux, Android, iOS.

+-------+

| OS |-----> [Program 1]

| |-----> [Program 2]

| |-----> [Program 3]

+-------+

(Switching rapidly between programs)

A diagram showing the OS managing multiple programs concurrently.

 According to Users:
 Single-user OS: Designed for use by a single user at a time. Examples: DOS, older versions of

Windows (e.g., Windows 98), macOS (primarily single-user, though supports fast user switching).

Image:

+-------+

| OS |-----> [User]

+-------+

A simple diagram showing one user interacting with the OS.

 Multi-user OS: Allows multiple users to access the computer system simultaneously, often through

terminals connected to a central server. Examples: UNIX, Linux (server versions), Windows Server.

+-------+

| OS |<---> [User 1]

| |<---> [User 2]

| |<---> [User 3]

+-------+

A diagram showing multiple users interacting with the OS simultaneously.

 According to User Interface:
 Graphical User Interface (GUI): Uses visual elements like icons, menus, and windows for user

interaction. Easier to learn and use for most people. Examples: Windows, macOS, Ubuntu (with

GNOME or KDE), Android, iOS.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Image: (Refer to the GUI image in function description)

 Command Line Interface (CLI): Requires users to type text-based commands to interact with the

OS. More powerful and efficient for certain tasks but has a steeper learning curve. Examples:

Command Prompt (Windows), Terminal (macOS, Linux).

 Image: (Refer to the CLI image in function description)

 Menu-Driven Interface: Presents users with a series of menus to navigate and select options.

Common in embedded systems and some older applications.

A simplified representation of a menu-driven interface.

1.6.3 Installing and Using an Operating System

(c) Install an Operating System in a Computer:

Installing an OS typically involves the following general steps:

1. Preparation:
 Ensure the computer meets the minimum hardware requirements for the OS.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Obtain the OS installation media (USB drive, DVD, or network installation files).

 Back up any important data on the computer's storage.

 Configure the computer's BIOS/UEFI settings to boot from the installation media.

2. Boot from Installation Media: Restart the computer and boot from the USB drive or DVD.

3. Start the Installation Process: The OS installer will start, prompting you to begin the installation.

4. Language and Regional Settings: Select your preferred language, keyboard layout, and time zone.

5. Installation Type: Choose between a clean install (erasing existing data) or an upgrade (keeping existing

files, if supported).

6. Disk Partitioning: Configure the hard drive or SSD by creating, deleting, or resizing partitions where the

OS will be installed.

7. File Copying and Installation: The installer will copy the OS files to the selected partition and install the

necessary components.

8. Configuration: Set up user accounts, computer name, network settings, and other initial configurations.

9. Driver Installation: The OS may automatically install drivers for hardware components. Additional drivers

may need to be installed manually.

10. Restart: The computer will typically restart to complete the installation process.

(d) Use an Operating System to Perform a Task:

Operating systems provide tools and interfaces to perform various tasks, such as:

 File and Folder Management:
 Create: Right-click in a folder and select "New" -> "Folder" or "File Type".

 Rename: Right-click on a file or folder and select "Rename", then type the new name.

 Delete: Right-click on a file or folder and select "Delete" (often moves to the Recycle Bin/Trash).

 Restore: Open the Recycle Bin/Trash, right-click on the deleted item, and select "Restore".

 Copy: Right-click on a file or folder, select "Copy", then right-click in the destination folder and

select "Paste". Alternatively, use keyboard shortcuts (Ctrl+C/Cmd+C and Ctrl+V/Cmd+V).

 Move: Right-click on a file or folder, select "Cut", then right-click in the destination folder and select

"Paste". Alternatively, drag and drop the item to the new location.

 Backup: Copy important files and folders to an external storage device or cloud storage. Some OS

have built-in backup utilities.

 Error Handling: The OS detects and handles errors such as program crashes, hardware malfunctions, and

file access issues. It may display error messages or attempt to recover from the error.

 Managing Input/Output Devices: The OS allows applications to use input devices (keyboard, mouse) to

interact with the system and sends output to output devices (monitor, printer).

 Managing Storage Devices: The OS organizes files on storage devices, manages free space, and ensures

data integrity.

1.6.4 Importance of Operating Systems in Computing

(e) Acknowledge the Importance of Operating Systems in Computing:

Operating systems are fundamental to modern computing. They are essential because they:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Provide a User Interface: Make computers accessible and usable for individuals without deep technical

knowledge.

 Manage Hardware Resources: Allow multiple applications to share the computer's resources efficiently

and prevent conflicts.

 Enable Multitasking: Allow users to run multiple applications simultaneously, improving productivity.

 Provide a Platform for Applications: Create a consistent environment for software developers to write

applications that can run on different hardware configurations.

 Handle System Security: Implement security features to protect the computer and its data from

unauthorized access and malware.

 Ensure Stability and Reliability: Manage system processes and resources to prevent crashes and ensure

smooth operation.

 Facilitate File Management: Organize and provide easy access to data stored on the computer.

Without an operating system, a computer would be a collection of isolated hardware components that users could

not easily interact with or utilize effectively. The OS is the crucial layer of software that makes the hardware useful

and enables the execution of all other software applications.

1.6.5 How an Operating System Communicates with Computer Hardware

(Key Inquiry Question: How does an operating system communicate with computer hardware?)

The operating system communicates with computer hardware through a layered approach involving device drivers

and system calls:

1. Device Drivers: These are software programs that act as translators between the OS and specific hardware

devices. Each type of hardware (e.g., a particular model of printer, graphics card, or network adapter)

requires a specific device driver.

When an application wants to use a hardware device, it communicates with the OS.

The OS then uses the appropriate device driver to send commands and receive data from the

hardware.

The driver understands the specific language and protocols of the hardware device.

Diagram:

+------------+ +-----+ +-----------------+ +-----------+

| Application|----->| OS |----->| Device Driver |----->| Hardware |

+------------+ +-----+ |(e.g., Printer)| |(Printer) |

 +-----------------+ +-----------+

A block diagram showing an application communicating with hardware through the OS and a device driver.

2. System Calls: These are programmatic ways in which a user-level program can request services from the

kernel of the operating system. Hardware-related operations (like accessing a file on disk, sending data to a

printer, or receiving input from a keyboard) are typically privileged operations that user programs cannot

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

perform directly. Instead, they make system calls to the OS kernel, which then interacts with the hardware

on their behalf using device drivers.

A block diagram showing an application making a system call to the OS, which then uses a device driver to interact

with hardware.

SUB-STRAND 1.7: COMPUTER SETUP

1.7.1 Computer Ports and Cables

Ports are connection points on a computer where external devices (peripherals) can be plugged in using cables.

Cables are physical wires or optical fibers that transmit data, power, or signals between the computer and these

devices.

(a) Explain Types of Ports and Cables:

Here are some common types of ports and their corresponding cables found on computer systems:

 USB (Universal Serial Bus): A versatile port used for connecting a wide range of peripherals like

keyboards, mice, printers, external hard drives, flash drives, digital cameras, and smartphones. USB ports

come in different standards (USB 2.0, USB 3.0, USB-C) with varying data transfer speeds and connector

types (Type-A, Type-B, Mini-B, Micro-B, Type-C).

o Port Image (USB Type-A):

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A picture of a USB Type-A port.

o Cable Image (USB Type-A to Type-B):

A picture of a USB Type-A to Type-B cable.

o Cable Image (USB Type-A to Micro-B):

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A picture of a USB Type-A to Micro-B cable.

o Port Image (USB Type-C):

A picture of a USB Type-C port.

o Cable Image (USB Type-C to Type-C):

A picture of a USB Type-C to Type-C cable.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A picture of a USB Types-A,B C cables.

 HDMI (High-Definition Multimedia Interface): Used for transmitting high-definition video and audio

signals from a computer to a monitor, TV, or projector.

A picture of an HDMI port.

o Cable

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A picture of an HDMI cable.

 DisplayPort (DP): Another interface for transmitting high-resolution video and audio, often used as an

alternative to HDMI, especially in computer monitors and some high-end graphics cards.

A picture of a Display cable

Dp port

 VGA (Video Graphics Array): An older analog interface used to connect monitors to computers. It

transmits only video signals. Often colored blue.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A picture of a VGA port.

o Cable Image:

A picture of a VGA cable.

 DVI (Digital Visual Interface): A digital interface used to connect monitors to computers. It can transmit

both analog and digital video signals depending on the type (DVI-A, DVI-D, DVI-I).

A picture of a DVI-I port.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

o Cable Image:

A picture of a DVI cable.

 Ethernet (RJ-45): Used for connecting computers to a network (LAN) or the internet via a wired

connection.

o +----------+

A picture of an Ethernet port (RJ-45).

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A picture of an Ethernet cable (RJ-45).

 Audio Ports (3.5mm Jack): Typically used for connecting headphones, speakers, and microphones. Often

color-coded (green for audio out, pink for microphone in, blue for line in).

o Port Image (Audio Out - Green):

A picture of a 3.5mm audio output port (often green).

A picture of a 3.5mm audio cable.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Power Connector: Used to connect the computer to a power outlet. The type of connector varies depending

on the power supply unit.

o Port Image (Power Input - IEC C14):

A picture of an IEC C14 power input port on a computer power supply.

A picture of a typical computer power cable.

(b) Relate Cables to their Corresponding Ports:

It is crucial to match the correct cable connector to its corresponding port on the computer and peripheral devices.

Forcing a cable into the wrong port can damage both the cable and the port. Key matching points include:

 Shape and Size: The shape and number of pins or contacts on the cable connector must align perfectly with

the port.

 Orientation: Some connectors, like USB Type-A, have a specific orientation. Others, like USB-C and

HDMI, are reversible.

 Color Coding: While not always a primary indicator, color coding can sometimes help identify audio or

older video ports (e.g., blue for VGA, green for audio out).

 Labels or Symbols: Look for labels or symbols near the ports that indicate their function (e.g., "HDMI,"

"USB," "LAN").

1.7.2 Setting Up a Computer for Use

(c) Set up a Computer for Use:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Setting up a computer involves connecting all the necessary peripherals and ensuring proper power and network

connections. Here is a general procedure:

1. Unpacking: Carefully unpack all the components, including the computer case (system unit), monitor,

keyboard, mouse, power cables, and any other peripherals. Keep the manuals and driver disks.

2. Placement: Position the computer case and monitor in a well-ventilated and stable location. Ensure there is

enough space for cables and airflow.

3. Connecting the Monitor:
o Connect one end of the appropriate video cable (HDMI, DisplayPort, DVI, or VGA) to the video

output port on the back of the computer case. This port is usually located on the graphics card or the

motherboard.

o Connect the other end of the video cable to the video input port on the monitor.

o Connect the monitor's power cable to a power outlet and to the monitor itself.

4. Connecting the Keyboard and Mouse:
o Connect the keyboard and mouse cables to the USB ports on the back or front of the computer case.

USB ports are usually rectangular.

o Some keyboards and mice may be wireless, requiring a USB receiver to be plugged into a USB port.

Ensure batteries are installed if needed.

5. Connecting Speakers or Headphones (Optional):
o If using wired speakers or headphones, connect the audio cable (usually a 3.5mm jack) to the audio

output port (usually green) on the back or front of the computer case.

o If using USB speakers or wireless audio devices, connect them via USB or follow the manufacturer's

instructions for pairing.

6. Connecting Network Cable (Optional):
o If using a wired network connection, connect one end of an Ethernet cable (RJ-45) to the Ethernet

port on the back of the computer case and the other end to a network port on a router or modem.

7. Connecting Power to the Computer Case:
o Connect one end of the computer's power cable to the power input port on the back of the computer

case.

o Connect the other end of the power cable to a grounded power outlet. It is recommended to use a

surge protector to protect the computer from power surges.

8. Turning on the Computer and Monitor:
o Press the power button on the computer case.

o Press the power button on the monitor.

9. Initial Setup (Operating System):
o If it's a new computer or a freshly installed operating system, follow the on-screen prompts to

configure the OS (language, region, user accounts, network settings, etc.).

10. Installing Drivers (If Necessary):
o The OS usually installs basic drivers automatically. However, you may need to install specific

drivers for certain hardware components (e.g., graphics card, printer) using the provided driver disks

or by downloading them from the manufacturer's website.

11. Installing Software:
o Once the OS is set up, you can install the applications and software you need.

(d) Appreciate Following the Correct Procedure:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Following the correct procedure when setting up a computer is important for several reasons:

 Safety: Incorrect connections or handling can lead to electrical hazards or damage to the equipment.

 Preventing Damage: Forcing cables into the wrong ports can damage the pins or connectors.

 Ensuring Proper Functionality: Connecting peripherals to the correct ports ensures they will work as

intended.

 Organized Setup: Following a logical order makes the setup process smoother and reduces the chance of

missing a step.

 Troubleshooting: If issues arise, a systematic setup makes it easier to identify the source of the problem.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

STRAND 2: COMPUTER NETWORKING

SUB-STRAND 2.1: DATA COMMUNICATION

2.1.1 Basic Data Communication Concepts

Data communication refers to the process of transferring data or information between two or more digital devices

over a communication medium.

(a) Define Basic Data Communication Concepts:

 Data: Raw, unprocessed facts, figures, symbols, or signals that represent information. In computing, data is

often represented digitally (as bits).

+---+---+---+---+---+

| 0 | 1 | 0 | 0 | 1 | ... (Bits of Data)

+---+---+---+---+---+

A representation of binary data (bits).

 Signals: The electrical or electromagnetic impulses used to transmit data over a communication channel.

Signals can be analog or digital.

o Analog Signals: Continuous wave signals that vary in amplitude, frequency, or phase to represent

data.

A graph showing a continuous analog signal varying in amplitude over time.

o Digital Signals: Discrete signals that have a finite number of distinct levels (usually two: high and

low, represented as 1 and 0).

Amplitude

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 1 0 1 1 0 1 0 1 1 0

A graph showing a discrete digital signal with high (1) and low (0) levels over time.

 Communication Channel (Medium): The physical pathway or means through which data signals are

transmitted from a sender to a receiver. Examples include copper wires, fiber optic cables, radio waves,

microwaves, and infrared.

A picture of a copper wire used as a communication channel.

A cross-section of a fiber optic cable transmitting light pulses.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A

conceptual representation of radio waves propagating through the air.

 Network: A collection of interconnected devices (computers, servers, routers, etc.) that can communicate

and share resources. Data communication is the fundamental process that enables networking.

o Diagram:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A basic diagram of a computer network showing interconnected devices.

 Transmission Media: The physical substance or electromagnetic waves used to carry data signals. This is

closely related to the communication channel. Can be guided (wired) or unguided (wireless).

o Guided Media: Physical cables like twisted pair, coaxial cable, and fiber optic cable.

o Unguided Media: Wireless transmission through air or space using radio waves, microwaves,

infrared, and light.

 TCP/IP (Transmission Control Protocol/Internet Protocol): A suite of communication protocols used to

interconnect network devices on the internet. TCP provides reliable, ordered, and error-checked delivery of

data, while IP handles addressing and routing of data packets.

o Diagram:
o +---------+ +---------+ +---------+ +---------+

o | Application|(Data) | TCP |(Segments)| IP |(Packets) | Network |

o +---------+------->+---------+------->+---------+------->+---------+

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A simplified diagram showing how data is encapsulated with TCP and IP headers.

 OSI (Open Systems Interconnection) Model: A conceptual framework that standardizes the functions of a

telecommunication or computing system in terms of abstraction layers. It has seven layers: Physical, Data

Link, Network, Transport, Session, Presentation, and Application. It provides a reference for understanding

how data communication occurs.

o Diagram:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A diagram listing the seven layers of the OSI model.

 Protocols: A set of rules and procedures that govern how data is transmitted and received over a

communication channel. Protocols ensure that communicating devices can understand each other. Examples

include TCP/IP, HTTP, FTP, SMTP.

A conceptual image showing two devices communicating using a common protocol.

 Data Rate (Bit Rate): The number of bits of data transmitted per unit of time, usually measured in bits per

second (bps), kilobits per second (kbps), megabits per second (Mbps), or gigabits per second (Gbps).

 Baud Rate: The number of signal units (symbols) transmitted per unit of time. In some cases, one baud

corresponds to one bit, but in more complex modulation schemes, one baud can represent multiple bits.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Bandwidth: The range of frequencies available for data transmission in a communication channel. A wider

bandwidth allows for higher data rates. Often used informally to refer to the data rate capacity of a network

connection.

2.1.2 Characteristics of Data Communication

(b) Describe Characteristics of Data Communication:

Effective data communication systems exhibit several key characteristics:

 Delivery: The system must deliver data to the correct destination accurately.

 Accuracy: The transmitted data should be exactly as it was sent, without errors. Error detection and

correction mechanisms are often employed.

 Timeliness: Data should be delivered within an acceptable time frame. For real-time applications (like video

conferencing), delays can make the communication unusable.

 Jitter: Refers to the variation in the delay of data packets arriving at the receiver. High jitter can negatively

impact the quality of real-time audio and video.

 Throughput: The actual rate at which data is successfully transferred between the sender and receiver. It

can be affected by factors like network congestion and the capabilities of the transmission medium.

2.1.3 Components of a Data Communication System

(c) Analyse the Components of a Data Communication System:

A basic data communication system consists of five key components:

 Sender (Source): The device that originates the data or message to be transmitted. Examples: a computer, a

smartphone, a sensor.

o Image:
o +-------+

o | Sender| (Data Originator)

o +-------+

A picture of a computer acting as a sender.

 Message: The information (data) to be communicated. It can be text, audio, video, images, or a combination.

o Image:
o +---------+

o | Message | (Information to be Transmitted)

o +---------+

A representation of a text message.

 Medium (Communication Channel): The physical path over which the message travels from the sender to

the receiver. Examples: wires, fiber optics, air (for wireless).

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

o Image: (Refer to the communication channel images in 2.1.1)

 Protocol: A set of rules that govern the communication process, ensuring that the sender and receiver can

understand each other. This includes aspects like data format, transmission rate, and error handling.

o Image: (Refer to the protocol image in 2.1.1)

 Receiver (Destination): The device that receives the transmitted message. Examples: a computer, a

smartphone, a printer.

o Image:
o +----------+

o | Receiver | (Data Destination)

o +----------+

A picture of a smartphone acting as a receiver.

 Diagram of Interaction:
 +--------+ +---------+ +--------+ +----------+ +----------+

 | Sender |------->| Message |------->| Medium |------->| Protocol |------->| Receiver |

 +--------+ +---------+ +--------+ +----------+ +----------+

A block diagram showing the interaction between the components of a data communication system.

2.1.4 Modes of Data Flow

(d) Simulate Modes of Data Flow in Communication Systems:

Data can flow between a sender and a receiver in three primary modes:

 Simplex: Data transmission occurs in only one direction. One device is always the sender, and the other is

always the receiver. Examples: Radio broadcasting (sender to listeners), television broadcasting.

o Simulation: Imagine a one-way street where traffic can only flow in one direction.

o Diagram:
o Sender -------------------------> Receiver

A diagram showing data flowing in one direction only.

 Half-Duplex: Data can be transmitted in both directions, but only one direction at a time. When one device

is sending, the other must wait to receive, and vice versa. Examples: Walkie-talkies (you say "over" to

indicate you're done talking and the other person can respond).

o Simulation: Imagine a two-way street that is narrow, allowing traffic to pass in only one direction at

a time, controlled by a signal.

o Diagram:
o Sender <---------------------> Receiver

o (One direction at a time)

A diagram showing data flowing in both directions, but not simultaneously.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Full-Duplex: Data can be transmitted in both directions simultaneously. Both devices can send and receive

data at the same time. Examples: Telephone conversations, most modern network connections (like internet

browsing).

o Simulation: Imagine a two-way street with multiple lanes allowing traffic to flow in both directions

at the same time.

o Diagram:
o Sender <=====================> Receiver

o (Both directions simultaneously)

A diagram showing data flowing in both directions simultaneously.

 Advantages and Disadvantages of Data Communication Modes:

Mode Advantages Disadvantages Examples
Simplex - Simple implementation - No interaction or feedback from the

receiver
- Radio broadcasting

 - Full channel capacity used for one-way
transmission

- Communication is only in one
direction

- TV broadcasting

Half-
Duplex

- Two-way communication possible - Requires coordination to avoid
collisions

- Walkie-talkies

 - Suitable for applications where simultaneous
two-way communication is not needed

- Slower two-way communication due
to the need to switch directions

- Older modems

Full-
Duplex

- Efficient two-way communication - More complex implementation - Telephone

 - No need for coordination between sender
and receiver

- Requires channel capacity in both
directions

- Internet

 - Allows for simultaneous sending and
receiving of data

 - Modern network
connections

2.1.5 Significance of Data Communication Systems in Networking

(e) Acknowledge the Significance of Data Communication Systems in Networking:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Data communication systems are the foundation upon which all computer networks are built. Their significance is

paramount:

 Enables Connectivity: They provide the means for devices to connect and interact with each other, forming

networks of various sizes and complexities.

 Facilitates Resource Sharing: Through data communication, networks enable the sharing of hardware

(printers, scanners), software (applications), and data among connected devices.

 Supports Information Exchange: They allow for the transfer of information in various forms (text, images,

audio, video) between users and systems.

 Underpins Internet Functionality: The internet, a global network, relies entirely on data communication

protocols and technologies to enable worldwide connectivity and access to information and services.

 Drives Modern Applications: Applications like email, web browsing, social media, online gaming, and

cloud computing all depend on robust and efficient data communication systems.

 Supports Business Operations: Businesses rely heavily on networks for internal communication, data

sharing, customer interaction, and accessing remote resources.

 Facilitates Automation and Control: In industrial and other settings, data communication enables the

monitoring and control of processes and devices.

2.1.6 Evolution of Data Communication Systems

Data communication systems have undergone a dramatic evolution over time:

 Early Days (Telegraph and Telephone): The earliest forms involved electrical signals over wires for text-

based communication (telegraph) and voice communication (telephone).

 Modems and Analog Networks: The advent of computers led to the use of modems to convert digital data

into analog signals for transmission over telephone lines.

 Digital Networks: The shift towards digital transmission technologies led to faster and more reliable data

communication. Technologies like ISDN emerged.

 Local Area Networks (LANs): The development of LAN technologies like Ethernet allowed for high-speed

communication between computers within a limited geographical area.

 The Internet and TCP/IP: The development of the TCP/IP protocol suite and the growth of the internet

revolutionized data communication, enabling global connectivity.

 Wireless Technologies: The emergence of wireless technologies like Wi-Fi, Bluetooth, and cellular

networks has provided mobility and flexibility in data communication.

 High-Speed Broadband: The development of broadband technologies (DSL, cable internet, fiber optics)

has significantly increased data rates and enabled bandwidth-intensive applications.

 Mobile Internet and 5G: The proliferation of smartphones and the rollout of high-speed mobile networks

(like 5G) have made high-speed data communication ubiquitous.

 Cloud Computing and IoT: Modern trends like cloud computing and the Internet of Things (IoT) are

driving further evolution in data communication to handle massive amounts of data and connect diverse

types of devices.

SUB-STRAND 2.2: DATA TRANSMISSION MEDIA

2.2.1 Basic Concepts in Data Transmission

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Data transmission is the process of transferring data between two or more points in a communication system.

(a) Define Basic Concepts Used in Data Transmission:

 Transmission: The act of conveying data from one point to another. This involves encoding the data into

signals suitable for the transmission medium.

 Transmission Media: The physical pathway (guided) or the environment (unguided) through which data

signals are propagated. Examples include cables, air, and vacuum.

 Encoding: The process of converting data into a specific format or code suitable for transmission. This

might involve representing binary data as electrical voltages, light pulses, or radio waves.

o Illustration:
o Data (e.g., 10110) ----> Encoder ----> Signal (e.g., Voltage Levels)

A simple diagram showing data being converted into a signal.

 Decoding: The reverse process of encoding, where the signal received is converted back into the original

data format.

o Illustration:
o Signal (e.g., Voltage Levels) ----> Decoder ----> Data (e.g., 10110)

A simple diagram showing a signal being converted back into data.

 Modulation: The process of varying one or more properties of a carrier wave (a high-frequency signal) with

the information signal to be transmitted. This is often used for analog transmission. Types include

Amplitude Modulation (AM), Frequency Modulation (FM), and Phase Modulation (PM).

A simplified diagram showing how the amplitude of a carrier wave is varied by a data signal.

 Demodulation: The process of extracting the original information signal from the modulated carrier wave at

the receiver.

o Illustration:
o Modulated Wave ----> Demodulator ----> Data Signal

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A simple diagram showing the extraction of the data signal from a modulated wave.

 Multiplexing: The technique of combining multiple data signals onto a single transmission medium

simultaneously, allowing for efficient use of the available bandwidth. Types include Frequency Division

Multiplexing (FDM), Time Division Multiplexing (TDM), and Wavelength Division Multiplexing (WDM).

o Illustration (Time Division Multiplexing):
o Data 1: |A|A|A|A|

o Data 2: |B|B|B|B|

o Data 3: |C|C|C|C|

o ----------------- (Time)

o Multiplexed Signal: |A|B|C|A|B|C|A|B|C|

 A

simplified diagram showing how data from multiple sources is interleaved in time.

 Demultiplexing: The process at the receiver of separating the combined signals back into their original

individual signals.

o Illustration:
o Multiplexed Signal ----> Demultiplexer ----> Data 1, Data 2, Data 3

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A simple

diagram

showing the separation of multiplexed signals into their original data streams.

2.2.2 Types of Transmission Media

(b) Describe Types of Transmission Media Used in Computer Networks:

Transmission media can be broadly classified into two categories: guided (wired) and unguided (wireless).

 Guided Media (Wired): Physical cables that guide the data signals along a specific path.

o Twisted Pair Cable: Consists of two insulated copper wires twisted together to reduce

electromagnetic interference (EMI) and crosstalk. Commonly used for Ethernet connections.

 Types: Unshielded Twisted Pair (UTP) and Shielded Twisted Pair (STP). STP has a metallic

shield for better EMI protection.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A cross-section of a twisted pair cable.

o Coaxial Cable: Has a central copper conductor surrounded by an insulating layer, a braided metal

shield, and an outer jacket. Offers better EMI protection and higher bandwidth than UTP. Used for

cable television and older Ethernet networks.

A cross-section of a coaxial cable showing its layers.

o Fiber Optic Cable: Transmits data as light pulses through thin strands of glass or plastic fibers.

Offers very high bandwidth, low attenuation, and immunity to EMI. Used for high-speed internet,

long-distance communication, and network backbones.

A cross-section of a fiber optic cable showing the core and cladding.

 Unguided Media (Wireless): Transmits data through the air or space using electromagnetic waves.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

o Radio Waves: Electromagnetic waves in the frequency range of 3 kHz to 300 GHz. Used for Wi-Fi,

Bluetooth, cellular communication, and radio broadcasting.

 Illustration: (Refer to the radio waves image in 2.1.1)

o Microwaves: Electromagnetic waves in the frequency range of 1 GHz to 300 GHz. Used for satellite

communication, microwave ovens, and some wireless LANs.

 Types: Terrestrial microwaves (ground-based antennas) and satellite microwaves

(communication via satellites).

A simplified representation of a microwave dish antenna.

o Infrared (IR): Electromagnetic waves with frequencies higher than microwaves but lower than

visible light. Used for short-range communication, such as remote controls and some wireless data

transfer between devices.

 Illustration (IR Transmission):
 [Device A] ---> (Invisible IR Light) ---> [Device B]

A simple diagram showing infrared communication between two devices.

2.2.3 Connecting Digital Devices

(c) Connect Digital Devices Used in Data Communication:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Connecting digital devices involves using the appropriate cables and ports based on the type of transmission media

and the devices involved. Examples include:

 Connecting computers to a wired network: Using Ethernet cables (RJ-45) to connect the network

interface card (NIC) of the computer to a port on a router or switch.

 Connecting a computer to a monitor: Using HDMI, DisplayPort, DVI, or VGA cables depending on the

available ports on both devices.

 Connecting peripherals (keyboard, mouse, printer) to a computer: Using USB cables.

 Establishing a Wi-Fi connection: Selecting the correct wireless network (SSID) and entering the password

(if required) on the device.

 Pairing Bluetooth devices: Putting both devices in pairing mode and selecting the other device from the list

of available devices.

Safety Rules During Connection:

 Power Off: Ensure all devices are powered off before connecting or disconnecting cables to prevent

electrical shock or damage.

 Gentle Handling: Handle cables and connectors gently to avoid bending pins or damaging the connectors.

 Correct Ports: Always plug a cable into the correct port. Forcing a connector can cause damage.

 Grounding: In some cases, especially with older equipment, proper grounding may be necessary to prevent

electrical hazards.

 Read Manuals: Refer to the user manuals of the devices for specific connection instructions and safety

precautions.

2.2.4 Factors Affecting Communication Over a Computer Network

(d) Establish Factors that Affect Communication Over a Computer Network:

Several factors can impact the quality and speed of data transmission over a computer network:

 Bandwidth: The capacity of the transmission medium to carry data. Higher bandwidth allows for faster data

transfer rates.

 Attenuation: The loss of signal strength as it travels over a distance. This can be a significant issue with

wired media over long distances and may require repeaters or amplifiers.

 Noise: Unwanted signals that interfere with the data signal. Sources of noise include electromagnetic

interference (EMI), radio frequency interference (RFI), and crosstalk.

 Latency: The delay experienced by data as it travels from the sender to the receiver. High latency can affect

the responsiveness of applications, especially real-time ones.

 Jitter: Variations in the delay of packets arriving at the receiver, which can disrupt real-time audio and

video streams.

 Interference: External signals that disrupt wireless transmissions, such as signals from other wireless

networks or electronic devices.

 Distance: The length of the transmission medium can affect signal strength and latency.

 Obstructions (for wireless): Physical barriers like walls, buildings, and terrain can weaken or block

wireless signals.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Network Congestion: When too many devices try to use the same network resources simultaneously, it can

lead to delays and reduced throughput.

 Quality of Hardware and Cables: Using low-quality cables or network equipment can introduce errors and

reduce performance.

Ways of Overcoming Transmission Impairments:

 Repeaters and Amplifiers: Used to boost signal strength over long distances in wired networks.

 Shielding: Used in cables (STP, coaxial) to reduce EMI and crosstalk.

 Error Detection and Correction: Protocols often include mechanisms to detect and correct errors

introduced during transmission.

 Signal Processing Techniques: Advanced modulation and encoding techniques can improve signal-to-noise

ratio.

 Using Higher Quality Media: Fiber optic cables offer better performance over long distances with less

attenuation and noise.

 Strategic Placement of Wireless Access Points: Optimizing the location of Wi-Fi routers can improve

signal coverage and reduce interference.

 Traffic Management Techniques: Network devices can prioritize traffic and manage congestion.

2.2.5 Role of Transmission Media in Computer Networking

(e) Appreciate the Role of Transmission Media in Computer Networking:

Transmission media are absolutely fundamental to computer networking. They provide the physical or wireless

pathways that enable communication between devices. Without transmission media:

 No Connection: Devices would be isolated and unable to exchange data.

 No Networks: The formation of local area networks (LANs), wide area networks (WANs), and the internet

would be impossible.

 Limited Functionality: The benefits of networking, such as resource sharing, information access, and

communication, would not be realized.

SUB-STRAND 2.3: COMPUTER NETWORK ELEMENTS

2.3.1 Types of Computer Networks

Computer networks can be classified based on their geographical scope, architecture, and purpose.

(a) Identify Different Types of Computer Networks:

 PAN (Personal Area Network): A network organized around an individual person, typically within a range

of a few meters. Used to connect personal devices. Examples: Bluetooth connection between a phone and

headphones, a USB connection between a computer and a printer, an infrared connection between a remote

and a TV.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A diagram showing various personal devices connected in a PAN.

 LAN (Local Area Network): A network that connects computers and devices within a limited geographical

area, such as an office, school, or home. Typically uses wired (Ethernet) or wireless (Wi-Fi) connections.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A diagram showing devices connected in a LAN using both wired and wireless connections.

 WLAN (Wireless Local Area Network): A type of LAN that uses wireless technologies (like Wi-Fi) to

connect devices within a limited area.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A diagram showing devices connected wirelessly in a WLAN.

 MAN (Metropolitan Area Network): A network that covers a larger geographical area than a LAN, such

as a city or metropolitan region. Often connects multiple LANs. Examples: Cable TV networks, some large

corporate networks spanning several buildings in a city.

A diagram showing multiple LANs interconnected by a MAN backbone.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 WAN (Wide Area Network): A network that spans a large geographical area, often across countries or

continents. The internet is the largest example of a WAN. WANs typically use various communication

technologies, including fiber optic cables, satellite links, and leased telephone lines.

A diagram showing LANs and remote users connected via the internet (a WAN).

2.3.2 Elements of a Computer Network

(b) Describe Elements of a Computer Network:

A computer network is comprised of several key elements that work together to enable communication:

 Transmission Media: The physical or wireless pathways that carry data signals (e.g., Ethernet cables, fiber

optic cables, radio waves). (Covered in Sub-strand 2.2)

 DTE (Data Terminal Equipment): End devices that generate or receive data. Examples: Computers

(desktops, laptops), smartphones, printers, servers.

o Image (Various DTEs):
o [Computer] [Smartphone] [Printer] [Server]

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A collection of images showing different types of DTE.

 DCE (Data Circuit-terminating Equipment): Devices that provide the interface between the DTE and the

communication medium. Examples: Modems, network interface cards (NICs).

o Image (DCEs):
o [Modem] [Network Interface Card (NIC)]

Images of a modem and a network interface card.

 Network Devices: Hardware components used to connect devices and facilitate communication within the

network. Examples:

o NIC (Network Interface Card): A hardware component in a computer that allows it to connect to a

network. Can be wired (Ethernet) or wireless (Wi-Fi adapter).

 Image: (Refer to the NIC image above)

o Hub: A simple networking device that connects multiple devices in a LAN. It receives incoming

signals on one port and broadcasts them to all other ports. Less efficient than switches.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A diagram showing devices connected to a hub.

o Switch: A more intelligent networking device than a hub. It learns the MAC addresses of connected

devices and forwards data only to the intended destination port, improving efficiency.

A diagram showing devices connected to a switch.

o Router: A device that forwards data packets between different networks. It uses routing tables to

determine the best path for data to travel. Essential for connecting LANs to the internet.



Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A diagram showing a router connecting a LAN to the internet.

o Modem (Modulator-Demodulator): A device that converts digital signals from a computer into

analog signals for transmission over analog communication lines (like telephone lines) and vice

versa. Less common with broadband internet.

 Image: (Refer to the modem image above)

o Bridge: A device that connects two LANs that use the same protocol. It forwards data based on

MAC addresses.



A diagram showing two LANs connected by a bridge.

o Gateway: A device that connects networks using different protocols. It performs protocol conversion

to enable communication between disparate systems.

 Diagram:
 [Network A (Protocol 1)] --- Gateway --- [Network B (Protocol 2)]

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A diagram

showing a gateway connecting two networks with different protocols.

o Repeater: A device that receives a signal, amplifies it, and retransmits it to extend the range of a

network segment, combating attenuation.

 Diagram:
 Signal ---> [Repeater] ---> Stronger Signal --->

A diagram illustrating a repeater amplifying a network signal.

 Network Software: Programs that enable communication and resource sharing over a network. Examples:

o Network Operating System (NOS): An OS designed to manage network resources and user access

(e.g., Windows Server, Linux Server).

o Web Browsers: Applications used to access and display web pages (e.g., Chrome, Firefox, Safari).

o Search Engines: Online tools used to find information on the internet (e.g., Google, Bing).

o Email Clients: Applications used to send and receive emails (e.g., Outlook, Thunderbird).

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

o Communication Protocols: Sets of rules that govern data transmission over the network (e.g.,

TCP/IP, HTTP, SMTP, FTP).

2.3.3 Criteria of a Computer Network

(c) Evaluate Criteria of a Computer Network:

The quality and effectiveness of a computer network can be evaluated based on several criteria:

 Performance: Measured by factors like data transfer rate (bandwidth), throughput (actual data transfer),

latency (delay), and jitter (delay variation). A good network offers high speed and low delays.

 Security: The ability of the network to protect data and resources from unauthorized access, use, disclosure,

disruption, modification, or destruction. Includes measures like firewalls, intrusion detection systems, and

encryption.

 Scalability: The ease with which the network can be expanded to accommodate more users and devices

without significant degradation in performance or increased complexity.

 Reliability: The consistency and dependability of the network. A reliable network experiences minimal

downtime and ensures consistent data delivery.

 Availability: The percentage of time the network and its resources are accessible to users. High availability

is crucial for critical applications.

 Cost: The total expense of setting up, maintaining, and upgrading the network infrastructure, including

hardware, software, and personnel.

2.3.4 Connecting to a Computer Network

(d) Connect a Computing Device to an Available Network:

Connecting a device to a network depends on whether it's a wired or wireless connection:

 Wired Connection (Ethernet):
1. Ensure you have an Ethernet cable (RJ-45).

2. Locate the Ethernet port on your computing device (usually on the back or side, looks like a wider

phone jack).

3. Locate an available Ethernet port on the network infrastructure (router, switch, or wall socket

connected to the network).

4. Plug one end of the Ethernet cable into the port on your device and the other end into the port on the

network infrastructure.

5. Your device should automatically attempt to establish a network connection. You may need to

configure IP address settings (usually automatically via DHCP).

 Wireless Connection (Wi-Fi):
1. Ensure your device has Wi-Fi capability enabled.

2. Open the list of available Wi-Fi networks (SSIDs) on your device (usually in the network settings).

3. Select the network you want to connect to.

4. If the network is secured, you will be prompted to enter the Wi-Fi password (network key).

5. Once you enter the correct password, your device should connect to the wireless network.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Sharing Data Through Different Network Setups: Once connected, you can share data through various

methods depending on the network and operating system:

o Shared Folders: Configuring folders on your computer to be accessible by other users on the same

local network.

o Network Drives: Mapping shared folders as virtual drives for easier access.

o File Transfer Protocol (FTP): Using FTP clients and servers to upload and download files.

o Cloud Storage Services: Sharing files via platforms like Google Drive, Dropbox, or OneDrive

(requires internet access).

o Email: Sending files as attachments.

o Messaging Apps: Sharing files through network-based messaging applications.

 Observing Online Safety Rules: When sharing resources through a computer network, especially the

internet, it's crucial to follow online safety rules:

o Use strong passwords: Protect your accounts and shared resources with robust, unique passwords.

o Be cautious of what you share: Avoid sharing sensitive personal information publicly.

o Use secure connections (HTTPS): When accessing websites or services that require login or

involve sensitive data, ensure the connection is encrypted (HTTPS).

o Be aware of phishing and malware: Do not click on suspicious links or download files from

untrusted sources.

o Use antivirus and firewall software: Protect your devices from malicious software and

unauthorized access.

o Keep software updated: Regularly update your operating system and applications to patch security

vulnerabilities.

o Respect privacy settings: Understand and configure privacy settings on online services.

2.3.5 Role of Computer Networks in Communication

(e) Appreciate the Role of Computer Networks in Communication:

Computer networks have revolutionized communication in numerous ways:

 Instant Communication: Networks enable real-time communication through email, instant messaging,

video conferencing, and voice over IP (VoIP).

 Global Connectivity: The internet, a vast network of networks, connects people and information across the

globe, breaking down geographical barriers.

 Information Sharing: Networks facilitate the easy sharing of information, resources, and knowledge among

individuals, organizations, and communities.

 Collaboration: Networks support collaborative work environments, allowing teams to work on projects

simultaneously from different locations.

 Access to Information and Services: The internet provides access to a vast array of information,

educational resources, entertainment, and online services (e-commerce, online banking, etc.).

 Business Operations: Businesses rely heavily on networks for internal communication, customer

interaction, supply chain management, and accessing global markets.

 Education and Research: Networks connect students, educators, and researchers, enabling access to remote

learning resources and facilitating collaboration on research projects.

 Social Interaction: Social media platforms and online communities built on networks allow people to

connect and interact with others who share similar interests.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

SUB-STRAND 2.4: NETWORK TOPOLOGIES

2.4.1 Introduction to Network Topologies

A network topology refers to the way in which the components of a network are interconnected. It describes the

layout of devices, cables, and wireless links, as well as the path that data follows between devices.

(a) Differentiate Between Physical and Logical Network Topologies:

 Physical Topology: Refers to the actual physical layout of the network components, including the cables,

devices, and their physical connections. It describes how the network devices are physically arranged and

interconnected.

Analogy: Think of the physical streets and roads connecting buildings in a city.

Illustration:

[Computer A] ----- Cable ----- [Hub/Switch] ----- Cable ----- [Computer B]

A simple diagram showing the physical connection between two computers via a central device.

 Logical Topology: Refers to the conceptual way in which data flows through the network, regardless of the

physical arrangement of the devices. It describes how devices communicate with each other and how data is

transmitted.

Analogy: Think of the routes and directions you take to get from one building to another in the city,

which might not directly follow the physical street layout.

Illustration (Logical Bus over Physical Star):

 [Computer A]

 /

 /

[Computer B] --- (Central Hub/Switch) --- [Computer C]

 \

 \

 [Computer D]

Physically a star, but logically data might be broadcast to all (like a bus). A diagram showing a

physical star topology where data is logically broadcast as in a bus topology.

Key Differences Summarized:

Feature Physical Topology Logical Topology

Focus Actual physical arrangement and connections Conceptual flow of data

Description How devices are physically connected by How data is transmitted and received between

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

cables devices

Examples Bus, Star, Ring, Mesh, Tree, Hybrid Broadcast, Token Passing, Point-to-Point, Client-

Server

Visibility Tangible, can be seen and touched Intangible, describes data communication patterns

Export to Sheets

2.4.2 Types of Logical and Physical Network Topologies

(b) Describe Types of Logical and Physical Computer Network Topologies:

Physical Topologies:

 Bus Topology: All devices are connected to a single cable, called the bus. Data is transmitted along the bus,

and all devices receive the signal, but only the intended recipient processes it. Older technology, less

common now.

Illustration:

[Computer A] --- [Connector] --- [Bus Cable] --- [Connector] --- [Computer B] ---

[Connector] --- [Computer C] --- [Terminator]

A diagram showing computers connected to a single bus cable terminated at both ends.

 Advantages: Simple to install and inexpensive for small networks.

 Disadvantages: Single point of failure (the bus), difficult to troubleshoot, limited bandwidth,

performance degrades as more devices are added.

 Star Topology: All devices are connected to a central hub or switch. All communication passes through the

central device. Most common topology for LANs.

Illustration:

 [Computer A]

 /|\

 / | \

 / | \

[Computer B] --- Hub/Switch --- [Computer C]

 \ | /

 \ | /

 \|/

 [Computer D]

A diagram showing computers connected to a central hub or switch.

 Advantages: Easy to troubleshoot (failure of one device or cable doesn't affect others), easy to add

or remove devices, centralized management.

 Disadvantages: Single point of failure (the central hub/switch), more cabling required than bus.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Ring Topology: Devices are connected in a closed loop or ring. Data travels around the ring in one

direction, passing through each device until it reaches its destination. Often uses token passing to control

access.

Illustration:

[Computer A] --- [Cable] --- [Computer B]

 ^ |

 | |

 +-----------------[Cable]------+

 [Computer C]

A diagram showing computers connected in a closed ring.

 Advantages: Relatively easy to install and manage, performs well under heavy load (with token

passing).

 Disadvantages: Single point of failure (a break in the ring can disrupt the entire network),

troubleshooting can be difficult, adding or removing devices can disrupt the network.

 Mesh Topology: Every device is connected to every other device in the network. Provides high redundancy

and fault tolerance. Expensive and complex to implement.

Illustration (Partial Mesh):

[A] --- [B] --- [C]

 | / \ |

 | / \ |

 [D] --- [E] --- [F]

A diagram showing a partially meshed network where not all devices are directly connected.

Illustration (Full Mesh):

 A

 / | \

 / | \

 B---C---D

 \ | /

 \|/

 E

In a full mesh, every node has a direct connection to every other node. A diagram showing a

fully meshed network where every device is directly connected to every other device.

 Advantages: Highly redundant (multiple paths for data), very fault-tolerant, good for high-traffic

networks.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Disadvantages: Very expensive (many cables and interfaces required), complex to install and

manage.

 Tree Topology: A combination of star and bus topologies. Multiple star networks are connected to a central

bus. Can extend the reach of a star network but inherits characteristics of both.

Illustration:

 [Bus Cable]

 |

 +------|------+

 | |

[Hub/Switch 1] [Hub/Switch 2]

 / | \ / | \

 A B C D E F

A diagram showing multiple star networks connected to a central bus.

 Advantages: Easy to expand from a star network, hierarchical management.

 Disadvantages: Failure of the bus can affect the entire network, more complex than pure star.

 Hybrid Topology: A combination of two or more different physical topologies. Allows for flexibility in

network design. Example: A star topology connected to a bus topology.

 Illustration: (See Tree Topology as an example of a hybrid)

 Advantages: Flexible, can be tailored to specific needs.

 Disadvantages: Can be complex to design and manage.

Logical Topologies:

 Broadcast Topology: Data is sent out to all devices on the network, and each device checks the destination

address to see if it should process the data. Common in bus and some wireless (Wi-Fi) networks.

o Analogy: A public announcement made over a loudspeaker, where everyone hears it, but only those

for whom it's intended will respond.

 Token Passing Topology: A special signal called a "token" circulates around the network. A device can

only transmit data when it holds the token. Common in ring networks (like Token Ring).

o Analogy: A microphone being passed around a meeting room; only the person holding the

microphone can speak.

 Point-to-Point Topology: A direct connection between two devices. Data travels directly between these two

points. Forms the basis of many WAN links and some LAN connections.

o Analogy: A direct phone call between two people.

 Client-Server Topology: One or more central servers provide resources or services to client devices.

Clients request services from the server. Common in many network applications (e.g., web browsing, file

sharing).

o Analogy: Customers (clients) requesting food from a waiter (server) in a restaurant.

2.4.3 Creating a Physical Network Topology

(c) Create a Physical Network Topology for a Computer Network:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Creating a physical network topology involves deciding on the arrangement of devices and the cabling

infrastructure. The choice depends on factors like:

 Size of the Network: Small networks might use a bus or star, while larger ones might use a tree or a

combination (hybrid).

 Cost: Bus is generally the cheapest for small networks, while mesh is the most expensive. Star is a good

balance.

 Reliability Requirements: Mesh offers the highest reliability due to redundancy. Star is more reliable than

bus.

 Ease of Expansion: Star and tree topologies are generally easier to expand.

 Ease of Troubleshooting: Star topology is usually the easiest to troubleshoot.

 Performance Requirements: Star and mesh topologies generally offer better performance than bus,

especially under heavy load.

Steps to Create a Physical Network Topology (Example: Small Office LAN using Star Topology):

1. Identify the Devices: Determine all the computers, printers, servers, and other network devices that need to

be connected. (e.g., 5 computers, 1 printer, 1 network storage device).

2. Choose the Central Device: Select a network switch with enough ports to accommodate all the devices

(e.g., an 8-port Ethernet switch).

3. Determine Cabling: Decide on the type and length of Ethernet cables needed to connect each device to the

switch. Measure the distances to ensure sufficient cable length.

4. Physical Connections:
 Place the switch in a central location.

 Run an Ethernet cable from the network port (NIC) of each computer to an available port on the

switch.

 Run an Ethernet cable from the network port of the printer to an available port on the switch.

 Run an Ethernet cable from the network port of the network storage device to an available port on the

switch.

5. Power Connections: Ensure all devices (computers, printer, network storage, switch) are connected to a

power source.

6. Documentation: Create a diagram showing the physical layout and connections for future reference and

troubleshooting.

(d) Simulate a Physical Network Topology Using Available Devices:

This can be done practically in a lab setting with computers, a switch/hub, and Ethernet cables, or using network

simulation software (like Packet Tracer). The simulation would involve physically connecting the devices according

to the chosen topology (e.g., star) and observing how data is transmitted.

2.4.4 Appreciation of Network Topologies

(d) Appreciate the Use of Network Topologies in Computer Networks:

Network topologies are crucial for the design, implementation, and management of computer networks. They:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Provide Structure: Define the organization and interconnection of network components.

 Affect Performance: Influence data transmission speed, efficiency, and potential bottlenecks.

 Impact Reliability: Determine the network's fault tolerance and ability to continue operating despite device

or link failures.

 Influence Scalability: Affect how easily the network can be expanded or modified.

 Guide Troubleshooting: The topology helps in understanding the data flow and identifying potential points

of failure.

 Inform Cost Considerations: The choice of topology affects the amount of cabling, hardware, and

complexity, thus impacting the overall cost.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

STRAND 3.0: SOFTWARE DEVELOPMENT

SUB-STRAND 3.1: COMPUTER PROGRAMMING CONCEPTS

3.1.1 Basic Programming Terminologies

(a) Explain the Terminologies Used in Programming Languages:

 Programming: The process of creating a set of instructions that tells a computer how to perform a specific

task or solve a problem. These instructions are written in a programming language.

 Analogy: Like writing a recipe with a sequence of steps to bake a cake.

 Programming Language: A formal language comprising a set of rules (syntax) and vocabulary (keywords)

that allows programmers to communicate instructions to a computer. Examples include Python, Java, C++,

and JavaScript.

 Image:

 ("Hello, World!")

A simple line of Python code.

 Language Translator: A program that converts code written in one programming language into another

language, typically into machine code that the computer can directly execute. There are two main types:

 Assembler: A translator that converts assembly language (a low-level language) into machine code.

 Diagram:
 Assembly Language Code ----> Assembler ----> Machine Code

 (e.g., ADD A, B) (Translator) (e.g., 00101011)

A block diagram showing the function of an assembler.

 Compiler: A translator that converts the entire source code of a high-level programming language

into machine code or an intermediate code before execution. The compiled code can then be

executed multiple times without recompilation.

Source Code (High-Level) ----> Compiler ----> Machine Code (or Intermediate

Code)

(e.g., Python, Java) (Translator) (Executable)

A block diagram showing the function of a compiler.

 Interpreter: A translator that reads and executes source code line by line. It does not create a

separate executable file. Each time the program runs, the interpreter translates and executes each

instruction.

Source Code (High-Level) ----> Interpreter ----> Execution (Line by Line)

(e.g., Python, JavaScript) (Translator & Executor)

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

A block diagram showing the function of an interpreter.

 Syntax: The set of rules that govern the structure and format of statements in a programming language. Like

grammar in human languages, correct syntax is essential for the program to be understood by the translator.

 Example (Python Syntax): Using indentation to define code blocks.

 Source Code: The text written by a programmer in a programming language, which contains the

instructions for the computer to execute.

 Image: (Refer to the simple Python program example above)

 Machine Code: The lowest-level form of computer instructions, represented in binary code (sequences of 0s

and 1s), that the CPU can directly execute. It is specific to the architecture of the computer's processor.

 Example (Simplified Machine Code): 00101011 00011100 (representing an instruction).

* Integrated Development Environment (IDE): A software application that provides comprehensive facilities to

computer programmers for software development. An IDE typically includes a source code editor, a compiler or

interpreter, build automation tools, and a debugger. Examples include PyCharm, Eclipse, and Visual Studio.

 Software Development Life Cycle (SDLC): A structured process followed by software development teams to

design, develop, test, and deploy software applications. It typically includes stages like planning, analysis, design,

implementation, testing, deployment, and maintenance.

3.1.2 Evolution of Programming Languages

(b) Describe the Evolution of Programming Languages in Software Development:

The evolution of programming languages has been driven by the need for more efficient, easier-to-use, and

powerful ways to instruct computers.

 First Generation (Machine Language): The earliest programming involved writing instructions directly in

binary code (0s and 1s) that the computer's CPU could understand. This was tedious, error-prone, and

machine-dependent.

 Timeline: Late 1940s and early 1950s.

 Characteristics: Directly executed by the CPU, machine-specific, difficult for humans to read and

write.

 Example: Sequences of binary digits representing operations and memory addresses.

 Second Generation (Assembly Language): To make programming easier, symbolic codes (mnemonics)

were introduced to represent machine instructions. An assembler was needed to translate assembly language

into machine code. Still low-level and machine-dependent but more human-readable.

 Timeline: 1950s.

 Characteristics: Uses mnemonics (e.g., ADD, SUB, MOV), requires an assembler, machine-

specific, more manageable than machine code.

 Example: ADD A, B (add the value in register B to register A).

 Third Generation (High-Level Languages): These languages were designed to be more human-like,

abstracting away many of the low-level details of the computer's architecture. They require compilers or

interpreters to be translated into machine code. Examples include FORTRAN, COBOL, BASIC, Pascal, and

C.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Timeline: 1950s to 1970s.

 Characteristics: More English-like syntax, easier to read and write, machine-independent (portable

to different architectures with recompilation), requires compilers or interpreters.

 Example (FORTRAN): DO 10 I = 1, 10

 Example (BASIC): 10 PRINT "Hello"

 Fourth Generation (Very High-Level Languages): These languages are designed to be even more user-

friendly and often focus on specific types of applications, such as database management and report

generation. They often use less code to accomplish more than third-generation languages. Examples include

SQL, and scripting languages like Perl and early versions of Python.

 Timeline: 1970s to 1990s.

 Characteristics: More abstract than 3GLs, often application-specific, may use visual programming

environments, focus on productivity.

 Example (SQL): SELECT * FROM users WHERE age > 30;
 Fifth Generation (Declarative Languages and AI Programming): These languages are often based on

artificial intelligence principles, aiming to solve problems using constraints and rules rather than explicit

algorithms. Examples include Prolog and Lisp (though Lisp has roots in earlier generations). Also includes

visual programming and natural language processing.

 Timeline: 1980s to present.

 Characteristics: Focus on "what" needs to be done rather than "how," used in AI, expert systems,

and logic programming.

 Example (Prolog): parent(john, mary).

3.1.3 Categorisation of Programming Languages by Paradigms

(c) Categorise the Programming Languages According to the Paradigms:

A programming paradigm is a style or approach to programming. Languages can support multiple paradigms.

 Structured Programming: A paradigm that emphasizes the use of structured control flow constructs like

sequences, selections (if-then-else), and iterations (loops) to create well-organized and easy-to-understand

programs. Procedural programming is often considered a type of structured programming.

 Languages: Pascal, C, early versions of BASIC.

 Procedural Programming: A paradigm where the program is organized into a set of procedures (also

called functions or subroutines) that perform specific tasks. Execution involves calling these procedures in a

specific order.

 Languages: C, Pascal, FORTRAN.

 Object-Oriented Programming (OOP): A paradigm based on the concept of "objects," which are instances

of "classes." Objects encapsulate data (attributes) and the code that operates on that data (methods). Key

principles of OOP include encapsulation, inheritance, and polymorphism.

 Languages: Java, Python, C++, C#, Smalltalk.

 Functional Programming: A paradigm that treats computation as the evaluation of mathematical functions

and avoids changing state and mutable data. Emphasizes immutability and side-effect-free functions.

 Languages: Haskell, Lisp, Clojure, F#, and functional features in Python and JavaScript.

 Logic Programming: A paradigm based on formal logic. Programs are expressed as a set of logical

sentences (facts and rules), and computation is performed by making logical inferences.

 Languages: Prolog.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Event-Driven Programming: A paradigm where the flow of the program is determined by events such as

user actions (mouse clicks, key presses), sensor outputs, or messages from other programs. Common in GUI

applications.

 Languages: JavaScript (for web), C# (for Windows Forms), Python (with libraries like Tkinter or

PyQt).

3.1.4 Simulating Low-Level Programming Languages

(d) Create Simple Instructions to Simulate Low-Level Programming Languages:

Simulating machine language and assembly language can be done by creating a simplified model of a CPU with

registers and a small set of instructions.

Simplified Machine Language Simulation:

Let's assume a very simple CPU with two registers (R1 and R2) and a small instruction set:

0001: LOAD value into a register (e.g., 0001 01 10 - LOAD 10 into R1)

0010: ADD the values of two registers (e.g., 0010 01 10 - ADD R1 and R2, store in R1)

0011: STORE the value of a register to memory (we'll skip memory addressing for simplicity)

0100: HALT (end program)

A sequence of machine code instructions might look like:

0001 01 05 // LOAD 5 into R1

0001 10 03 // LOAD 3 into R2

0010 01 10 // ADD R1 and R2 (result in R1)

0011 01 // STORE R1 (in a conceptual output)

0100 00 // HALT

Simplified Assembly Language Simulation:

We can use mnemonics for the above machine code:

LOAD R1, 5

LOAD R2, 3

ADD R1, R2 (assuming result goes to the first operand)

STORE R1

HALT

To simulate this, one could manually trace the execution:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

1. LOAD R1, 5: Register R1 now holds the value 5.

2. LOAD R2, 3: Register R2 now holds the value 3.

3. ADD R1, R2: The value of R2 (3) is added to the value of R1 (5), and the result (8) is stored in R1. R1 is

now 8, R2 is 3.

4. STORE R1: The value of R1 (8) is conceptually stored or displayed as output.

5. HALT: The program ends.

This simple simulation demonstrates the basic operation of low-level instructions involving registers and operations.

3.1.5 Acknowledging the Evolution of Programming Languages

(e) Acknowledge the Evolution of Programming Languages in Software Development:

The evolution of programming languages represents a significant advancement in the field of computer science.

This evolution has led to:

 Increased Programmer Productivity: Higher-level languages allow programmers to write more complex

programs with less code, saving time and effort.

 Improved Code Readability and Maintainability: More human-like syntax makes code easier to

understand, debug, and maintain over time.

 Greater Portability: High-level languages can be compiled or interpreted to run on different computer

architectures, increasing software portability.

 Abstraction of Complexity: Programmers can focus on solving the problem at hand rather than dealing

with the intricacies of the underlying hardware.

 Development of New Paradigms: The evolution has introduced new ways of thinking about and structuring

programs, leading to more powerful and flexible software development approaches (like OOP and functional

programming).

 Democratization of Programming: Higher-level languages and better development tools have made

programming accessible to a wider range of people.

3.1.6 Why Programming Languages are Important in Computing

Programming languages are fundamental to computing because they:

 Enable Communication with Computers: They provide a way for humans to give instructions to

computers in a structured and understandable format.

 Drive Software Development: All software applications, from operating systems to mobile apps, are

created using programming languages.

 Automate Tasks: Programming allows for the automation of repetitive and complex tasks, increasing

efficiency and reducing errors.

 Solve Problems: They provide the tools to create algorithms and implement solutions to a wide range of

problems in various domains.

 Control Hardware: Programming is used to write firmware and drivers that control the behavior of

computer hardware.

 Facilitate Innovation: They are essential for developing new technologies and pushing the boundaries of

what computers can do.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Support Data Processing and Analysis: Programming languages are crucial for manipulating, analyzing,

and extracting insights from data.

 Power the Digital World: From the internet to artificial intelligence, programming languages are the

backbone of the digital infrastructure that shapes modern society.

3.1.7 How Programming Languages are Executed

Programming languages are executed through the process of translation into machine code that the CPU can

understand and execute. The method of translation depends on the type of language:

 Compiled Languages: The entire source code is first translated into machine code (or an intermediate code)

by a compiler. This translation process happens once. The resulting executable code can then be run directly

by the computer's CPU (or a virtual machine for intermediate code like Java bytecode). Execution is

generally faster after compilation. Examples: C, C++, Java (to bytecode).

 Interpreted Languages: The source code is translated and executed line by line by an interpreter each time

the program is run. No separate executable file is created. This allows for easier debugging and cross-

platform compatibility (if an interpreter exists for the target platform). Execution can be slower than

compiled code. Examples: Python, JavaScript, Ruby.

 Assembly Language: Translated into machine code by an assembler. Each assembly instruction typically

corresponds directly to one machine instruction. The resulting machine code is then executed directly by the

CPU.

SUB-STRAND 3.2: PROGRAM DEVELOPMENT (15 Lessons)

3.2.1 Stages of Program Development

(a) Describe Stages of Program Development in Computer Programming:

The program development cycle (PDC) is a series of steps that software developers typically follow to create a

computer program. These stages help to organize the development process and ensure that the final product meets

the required specifications.

 Problem Definition: Clearly understanding and defining the problem that the program needs to solve. This

involves identifying the inputs, the desired outputs, and any constraints or requirements.

o Example: The problem is to create a program that calculates the area of a rectangle given its length

and width.

 Program Design: Planning the solution to the defined problem. This stage involves designing the algorithm

(a step-by-step procedure) that the program will follow. Tools like pseudocode and flowcharts are used to

represent the algorithm's logic.

o Example: Designing an algorithm that takes length and width as input, multiplies them, and displays

the result as the area.

 Coding (Implementation): Translating the designed algorithm into a specific programming language. This

involves writing the actual source code of the program.

o Example: Writing the program in Python using input functions, arithmetic operations, and output

functions.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Testing: Checking if the program works correctly and meets the requirements defined in the problem

definition. This involves running the program with various inputs to identify and fix any errors (bugs).

Different types of testing include unit testing, integration testing, and system testing.

o Example: Running the area calculation program with different length and width values to ensure it

produces the correct area. Testing with invalid inputs (e.g., negative numbers) might also be

necessary.

 Implementation (Deployment): Making the program available for use. This might involve installing the

program on users' computers, deploying it on a server, or making it accessible through a web browser.

o Example: Distributing the compiled program or deploying a web application that calculates the

rectangle's area.

 Documentation: Creating written materials that describe the program, its design, how to use it, and its

development process. This includes user manuals, technical documentation, and comments within the source

code.

o Example: Writing a user guide explaining how to input the length and width and interpret the output

of the area calculation program.

 Maintenance: Modifying, updating, and fixing errors in the program after it has been deployed. This can

include bug fixes, performance improvements, and adding new features.

o Example: Updating the area calculation program to handle different units of measurement or to

calculate the perimeter as well.

(b) Write a Pseudocode to Illustrate the Logical Flow of an Algorithm:

Pseudocode is an informal, high-level description of the operating principle of a computer program or other

algorithm. It uses structural conventions of a normal programming language but is intended for human reading

rather than machine reading. It typically omits details like variable declarations and specific syntax.

Keywords Commonly Used in Pseudocode:

START / BEGIN: Marks the beginning of the algorithm.

INPUT: Indicates that data is to be received from the user or an external source.

OUTPUT / PRINT / DISPLAY: Indicates that data is to be shown to the user or sent to an external destination.

SET / LET: Assigns a value to a variable.

IF ... THEN ... ELSE ... ENDIF: Represents a decision or conditional statement.

WHILE ... DO ... ENDWHILE: Represents a loop that continues as long as a condition is true.

FOR ... TO ... STEP ... ENDFOR: Represents a loop that iterates a specific number of times.

Mathematical operators (+, -, *, /, ^, MOD) and comparison operators (=, <, >, <=, >=, !=).

END / STOP: Marks the end of the algorithm.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Variables are used to store data.

Example Pseudocode (Calculate Area of a Rectangle):

START

 INPUT length

 INPUT width

 SET area = length * width

 OUTPUT area

END

Example Pseudocode (Find the Larger of Two Numbers):

START

 INPUT number1

 INPUT number2

 IF number1 > number2 THEN

 OUTPUT number1

 ELSE

 OUTPUT number2

 ENDIF

END

Example Pseudocode (Calculate Sum of Numbers from 1 to N):

START

 INPUT N

 SET sum = 0

 SET counter = 1

 WHILE counter <= N DO

 SET sum = sum + counter

 SET counter = counter + 1

 ENDWHILE

 OUTPUT sum

END

(c) Represent the Logical Flow of an Algorithm Using a Flowchart:

A flowchart is a diagram that uses standard symbols to represent the steps and decisions in an algorithm. It provides

a visual representation of the logical flow of the program.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Standard Flowchart Symbols:

 Terminal (Start/End): Represented by an oval or rounded rectangle. Indicates the beginning and end of the

algorithm.

 Process: Represented by a rectangle. Indicates an operation or a step in the algorithm (e.g., calculation,

assignment).

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Input/Output: Represented by a parallelogram. Indicates data being read from an input source or written to

an output destination.

 Decision: Represented by a diamond. Indicates a point where a condition is evaluated, and the flow of the

algorithm branches based on the outcome (True or False, Yes or No).

 Flow Lines (Arrows): Represented by arrows. Show the direction of flow of control in the algorithm.

 Connector (On-page): Represented by a small circle. Used to connect different parts of the flowchart on the

same page, avoiding long or crossing flow lines.

o Symbol: (O)
 Off-page Connector: Represented by a pentagon or a shaped rectangle. Used to connect different parts of

the flowchart across multiple pages.

Example Flowchart (Calculate Area of a Rectangle):

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Code snippet
graph TD

 A(Start) --> B{Input Length};

 B --> C{Input Width};

 C --> D[Area = Length * Width];

 D --> E{Output Area};

 E --> F(End);

Example Flowchart (Find the Larger of Two Numbers):

Code snippet
graph TD

 A(Start) --> B{Input Number1};

 B --> C{Input Number2};

 C --> D{Number1 > Number2?};

 D -- Yes --> E{Output Number1};

 D -- No --> F{Output Number2};

 E --> G(End);

 F --> G;

Example Flowchart (Calculate Sum of Numbers from 1 to N):

Code snippet
graph TD

 A(Start) --> B{Input N};

 B --> C[Sum = 0];

 C --> D[Counter = 1];

 E{Counter <= N?};

 D --> E;

 E -- Yes --> F[Sum = Sum + Counter];

 F --> G[Counter = Counter + 1];

 G --> E;

 E -- No --> H{Output Sum};

 H --> I(End);

(d) Design an Algorithm to Solve a Real-Life Problem:

Designing an algorithm involves breaking down a problem into a sequence of steps that can be followed to achieve

the desired outcome.

Example Real-Life Problem: Algorithm to Prepare a Cup of Tea:

1. Start
2. Input: Get a kettle, water, tea bag, cup, and optionally sugar and milk.

3. Fill the kettle with water.

4. Turn on the kettle and wait for the water to boil.

5. Pour the boiled water into the cup.

6. Place the tea bag in the cup of hot water.

7. Wait for the tea to brew (e.g., 2-3 minutes).

8. Remove the tea bag from the cup.

9. Decision: If the user wants sugar, then add sugar to the cup and stir.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

10. Decision: If the user wants milk, then add milk to the cup and stir.

11. Output: Serve the cup of tea.

12. End

Pseudocode for Preparing Tea:

START

 INPUT kettle, water, teaBag, cup, sugar (optional), milk (optional)

 FILL kettle WITH water

 TURN_ON kettle

 WAIT UNTIL water BOILS

 POUR boiled_water INTO cup

 PLACE teaBag IN cup

 WAIT FOR 180 SECONDS (3 minutes)

 REMOVE teaBag FROM cup

 INPUT wantsSugar

 IF wantsSugar IS TRUE THEN

 INPUT amountOfSugar

 ADD amountOfSugar TO cup

 STIR

 ENDIF

 INPUT wantsMilk

 IF wantsMilk IS TRUE THEN

 INPUT amountOfMilk

 ADD amountOfMilk TO cup

 STIR

 ENDIF

 OUTPUT cup OF tea

END

Flowchart for Preparing Tea (Simplified):

Code snippet
graph TD

 A(Start) --> B{Get Kettle, Water, Tea Bag, Cup};

 B --> C[Fill Kettle with Water];

 C --> D[Turn on Kettle];

 D --> E{Water Boils?};

 E -- No --> D;

 E -- Yes --> F[Pour Water into Cup];

 F --> G[Place Tea Bag in Cup];

 G --> H[Wait 3 Minutes];

 H --> I[Remove Tea Bag];

 I --> J{Wants Sugar?};

 J -- Yes --> K[Add Sugar, Stir];

 J -- No --> L{Wants Milk?};

 K --> L;

 L -- Yes --> M[Add Milk, Stir];

 L -- No --> N[Serve Tea];

 M --> N;

 N --> O(End);

(e) Appreciate the Importance of Using Algorithms in Problem Solving:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Algorithms are fundamental to computer science and problem-solving for several reasons:

 Logical Structure: They provide a clear and logical sequence of steps to solve a problem, making the

solution easier to understand and implement.

 Efficiency: Designing efficient algorithms can significantly reduce the time and resources required to solve

a problem.

 Automation: Once an algorithm is developed, it can be translated into a computer program to automate the

problem-solving process.

 Reproducibility: Algorithms ensure that the same input will always produce the same output, making the

solution consistent and reliable.

 Communication: Flowcharts and pseudocode provide a way to communicate the solution to others,

regardless of the programming language being used.

 Foundation for Programming: Algorithms are the blueprint for writing computer code. Without a well-

defined algorithm, the coding process can be chaotic and error-prone.

 Problem Decomposition: Complex problems can be broken down into smaller, more manageable sub-

problems, each with its own algorithm, making the overall problem easier to solve.

SUB-STRAND 3.3: IDENTIFIERS AND OPERATORS

3.3.1 Elementary Elements of a Computer Program

(a) Describe the Elementary Elements of a Computer Program:

A computer program is made up of several fundamental elements that work together to perform a specific task.

These include:

 Structure: Refers to the way the program is organized and how its different parts are related. Structured

programming emphasizes a logical flow using constructs like sequences, selections (if-else), and iterations

(loops). This makes programs easier to read, understand, and maintain.

 Example (Python - Sequence):

Python

print("Step 1")

print("Step 2")

print("Step 3")

 Example (Python - Selection):

Python

age = 20

if age >= 18:

 print("Adult")

else:

 print("Minor")

 Example (Python - Iteration):

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Python

for i in range(5):

 print(i)

 Syntax: The set of rules that dictate the correct way to write statements in a programming language. Just

like grammar in human languages, following the syntax is crucial for the compiler or interpreter to

understand the code. Syntax errors will prevent the program from running.

 Example (Syntax Error in Python): Missing a colon after an if statement will result in a syntax

error.

Python

if age >= 18 # Missing colon

 print("Adult")

 Errors: Issues that can occur in a program. There are different types:

 Syntax Errors: Violations of the programming language's grammar rules. Detected by the compiler

or interpreter before or during execution.

 Logical Errors: Errors in the program's design or algorithm that cause it to produce incorrect results,

even if the syntax is correct. These are often harder to find and require careful testing.

 Runtime Errors: Errors that occur while the program is running. These can be due to issues like

division by zero, trying to access an invalid memory location, or attempting an operation that is not

allowed.

 Reserved Words (Keywords): Words that have a predefined meaning in a programming language and

cannot be used as identifiers (e.g., if, else, for, while, print, class, def).

 Example (Python Keywords): and, as, assert, break, class, continue, def, del, elif, else,

except, False, finally, for, from, global, if, import, in, is, lambda, None, nonlocal, not, or,

pass, raise, return, True, try, while, with, yield.

 Identifiers: Names given to variables, constants, functions, classes, and other user-defined entities in a

program. They allow programmers to refer to these elements. Most languages have rules for naming

identifiers (e.g., must start with a letter or underscore, cannot contain spaces or special characters, case

sensitivity).

 Example (Valid Python Identifiers): age, student_name, totalAmount, calculate_area.

 **Example (Invalid Python Identifiers):1st_name, student name, total-amount, if.

 Data Types: Classifications of data that determine the possible values, the operations that can be performed

on them, and the way they are stored in memory. Common data types include integers, floating-point

numbers, strings, booleans, etc.

 Example (Common Data Types):

 Integer: Whole numbers (e.g., 10, -5).

 Float: Numbers with decimal points (e.g., 3.14, -2.5).

 String: Sequences of characters (e.g., "Hello", "World").

 Boolean: Logical values (e.g., True, False).

 Standard Libraries: Collections of pre-written code (functions, modules, classes) that provide ready-to-use

functionalities for common tasks, saving programmers from having to write everything from scratch.

 Example (Python Standard Library): The math module provides mathematical functions (e.g.,

math.sqrt(), math.sin()), and the os module provides operating system-related functions.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

3.3.2 Variables and Constants

(b) Declare Variables and Constants in a Programming Language:

Variables are named storage locations in memory that hold data values that can change during the execution of a

program. Constants are named storage locations whose values are set once and cannot be changed during program

execution.

The syntax for declaring variables and constants varies between programming languages.

 Variable Declaration (Examples):
 Python (Dynamically Typed): You typically don't explicitly declare the data type. It's inferred at the

time of assignment.

Python

age = 25

name = "Alice"

is_student = True

 C++ (Statically Typed): You need to specify the data type when declaring a variable.

C++

int age = 25;

std::string name = "Alice";

bool isStudent = true;

 Java (Statically Typed): Similar to C++.

Java

int age = 25;

String name = "Alice";

boolean isStudent = true;

 Constant Declaration (Examples):
 Python: Python doesn't have a built-in way to enforce true constants. By convention, variables

intended as constants are often named in all uppercase.

Python

PI = 3.14159

MAX_USERS = 100

 C++: Uses the const keyword to declare constants.

C++

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

const double PI = 3.14159;

const int MAX_USERS = 100;

 Java: Uses the final keyword to declare constants (often also static for class constants).

Java

final double PI = 3.14159;

static final int MAX_USERS = 100;

 Assigning Data Types to Variables: In statically typed languages (like C++, Java), the data type is

explicitly assigned during declaration and cannot typically be changed later. In dynamically typed languages

(like Python), the data type of a variable can change as different values are assigned to it.

 Example (Python - Dynamic Typing):

Python

x = 10 # x is an integer

print(type(x))

x = "Hello" # x is now a string

print(type(x))

3.3.3 Input and Output Statements

(c) Use Input and Output Statements in a Programming Language:

Input statements allow a program to receive data from an external source, typically the user (via the keyboard).

Output statements allow a program to display or send data to an external destination, typically the console (screen).

 Input Statements (Examples):

 Python: The input() function is used to get input from the user. It returns a string, which may need

to be converted to other data types.

Python

name = input("Enter your name: ")

age_str = input("Enter your age: ")

age = int(age_str) # Convert string to integer

 C++: The std::cin object (from the <iostream> library) is used for input.

C++

std::string name;

int age;

std::cout << "Enter your name: ";

std::cin >> name;

std::cout << "Enter your age: ";

std::cin >> age;

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Java: The Scanner class (from the java.util package) is commonly used for input.

Java

import java.util.Scanner;

Scanner scanner = new Scanner(System.in);

System.out.print("Enter your name: ");

String name = scanner.nextLine();

System.out.print("Enter your age: ");

int age = scanner.nextInt();

scanner.close();

 Output Statements (Examples):

 Python: The print() function is used to display output to the console.

Python

name = "Bob"

age = 30

print("Name:", name)

print(f"Age: {age}") # f-string formatting

 C++: The std::cout object (from the <iostream> library) is used for output.

C++

std::string name = "Bob";

int age = 30;

std::cout << "Name: " << name << std::endl;

std::cout << "Age: " << age << std::endl;

 Java: The System.out.println() method is used for output to the console (with a newline at the

end), and System.out.print() for output without a newline.

Java

String name = "Bob";

int age = 30;

System.out.println("Name: " + name);

System.out.println("Age: " + age);

3.3.4 Operators in a Programming Language

(d) Use Operators in a Programming Language:

Operators are special symbols that perform operations on one or more operands (values or variables). Programming

languages typically provide various categories of operators:

 Arithmetic Operators: Used to perform mathematical calculations.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 + (Addition)

 - (Subtraction)

 * (Multiplication)

 / (Division)

 // (Floor Division - integer part of the division)

 % (Modulo - remainder of the division)

 ** (Exponentiation - raising to a power)

 Example (Python):

Python

a = 10

b = 3

print(a + b) # 13

print(a - b) # 7

print(a * b) # 30

print(a / b) # 3.333...

print(a // b) # 3

print(a % b) # 1

print(a ** b) # 1000

 Assignment Operators: Used to assign values to variables.

 = (Simple assignment)

 += (Add and assign)

 -= (Subtract and assign)

 *= (Multiply and assign)

 /= (Divide and assign)

 //= (Floor divide and assign)

 %= (Modulo and assign)

 **= (Exponentiate and assign)

 Example (Python):

Python

x = 5

x += 2 # x = x + 2 (x becomes 7)

y = 10

y %= 3 # y = y % 3 (y becomes 1)

 Increment and Decrement Operators: Used to increase or decrease the value of a variable by one

(common in languages like C++, Java). Python uses += 1 and -= 1 for this.

 ++ (Increment)

 -- (Decrement)

 Example (C++):

C++

int count = 0;

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

count++; // count becomes 1

int num = 5;

num--; // num becomes 4

 Relational (Comparison) Operators: Used to compare two values. They return a boolean result (True or

False).

 == (Equal to)

 != (Not equal to)

 > (Greater than)

 < (Less than)

 >= (Greater than or equal to)

 <= (Less than or equal to)

 Example (Python):

Python

p = 5

q = 10

print(p == q) # False

print(p != q) # True

print(p < q) # True

 Logical Operators: Used to combine or modify boolean expressions.

 and (Logical AND - true if both operands are true)

 or (Logical OR - true if at least one operand is true)

 not (Logical NOT - true if the operand is false)

 Example (Python):

Python

age = 25

is_student = True

if age > 18 and is_student:

 print("Eligible")

if age < 18 or is_student:

 print("Young or a student")

if not is_student:

 print("Not a student")

 Order of Precedence: Operators have a specific order in which they are evaluated in an expression. For

example, multiplication and division usually have higher precedence than addition and subtraction.

Parentheses can be used to override the default precedence.

 Example (Python):

Python

result = 5 + 3 * 2 # Multiplication is done first (result is 11)

result = (5 + 3) * 2 # Parentheses force addition first (result is 16)

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

3.3.5 Appreciation of Identifiers and Operators

(e) Appreciate the Role of Identifiers and Operators in Programming:

Identifiers and operators are fundamental building blocks of any computer program. Their roles are crucial for the

following reasons:

 Identifiers Enable Data Management: They provide a way to name and refer to memory locations

(variables and constants) where data is stored. This allows programs to store, retrieve, and manipulate

information effectively. Meaningful identifiers make code more readable and understandable.

 Operators Facilitate Computation and Logic: Operators allow programs to perform calculations

(arithmetic operators), assign values (assignment operators), compare data (relational operators), and make

logical decisions (logical operators). They are the verbs of a programming language, enabling the program to

perform actions and make choices.

 Structure and Control Flow: Operators, especially relational and logical ones, are essential for creating

control flow structures (like if statements and loops) that determine the order in which instructions are

executed based on certain conditions.

 Expressing Algorithms: Algorithms, the step-by-step solutions to problems, are implemented in

programming languages using identifiers to represent data and operators to perform the necessary

operations.

 Interacting with the User: Identifiers are used to store input received from the user, and operators are used

to process this input and generate meaningful output.

 Using Libraries: Identifiers are used to refer to functions, classes, and modules from standard and third-

party libraries, extending the capabilities of the program. Operators are used to interact with these library

components.

Without identifiers, programs would not be able to store and manage data. Without operators, programs would be

limited to static sequences of instructions without the ability to perform calculations, comparisons, or make

decisions. Together, identifiers and operators provide the essential tools for programmers to create dynamic,

functional, and problem-solving software.

3.3.6 Importance of Structured Programming Language

(Key Inquiry Question 1: What is the importance of structured programming language?)

Structured programming languages (which enforce or encourage structured programming principles) are important

because they:

 Improve Code Readability: The use of clear control flow structures (sequence, selection, iteration) makes

the program's logic easier to follow.

 Enhance Code Maintainability: Well-structured code is easier to understand, debug, and modify, reducing

the effort required for maintenance.

 Reduce Complexity: By breaking down programs into smaller, logical blocks, structured programming

helps manage the complexity of large software projects.

 Promote Code Reusability: Procedures and functions, key elements of structured programming, can be

reused in different parts of the program or in other programs.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Facilitate Teamwork: A consistent and structured approach makes it easier for multiple programmers to

work on the same project.

 Minimize Errors: The clear and logical flow of control reduces the likelihood of logical errors and makes

them easier to identify during testing.

 Improve Efficiency: While not always directly related to performance, structured programming can lead to

more efficient algorithms due to better organization.

3.3.7 How Variables are Declared in Programming Languages

The way variables are declared varies depending on whether the language is statically typed or dynamically typed:

 Statically Typed Languages (e.g., C++, Java, C#):
o Variables must be explicitly declared before they can

SUB-STRAND 3.4: CONTROL STRUCTURES (17 Lessons)

3.4.1 Introduction to Control Structures

(a) Describe Control Structures and their Importance in Programming:

Control structures are statements in a programming language that determine the flow of execution of instructions in

a program. They allow a program to make decisions, repeat blocks of code, and execute instructions in a specific

order. The three basic types of control structures are:

 Sequential Control Structure: Instructions are executed in the order they appear in the program, one after

the other, from top to bottom. This is the default way code is executed.

 Example (Python):

Python

print("Start")

x = 5

y = 10

sum = x + y

print("The sum is:", sum)

print("End")

In this example, each print and assignment statement is executed in the order it is written.

 Selection (Conditional) Control Structure: Allows the program to make decisions and execute different

blocks of code based on whether a certain condition is true or false. Common selection structures include if,

if-else, and if-elif-else statements.

 Example (Python - if):

Python

age = 18

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

if age >= 18:

 print("You are eligible to vote.")

The print statement is executed only if the condition age >= 18 is true.

 Example (Python - if-else):

Python

number = 10

if number % 2 == 0:

 print("The number is even.")

else:

 print("The number is odd.")

One of the two print statements is executed based on whether the condition number % 2 == 0 is

true or false.

 Example (Python - if-elif-else):

Python

score = 75

if score >= 80:

 grade = "A"

elif score >= 70:

 grade = "B"

elif score >= 60:

 grade = "C"

else:

 grade = "Fail"

print("Your grade is:", grade)

One of the grade assignments is executed based on the value of score.

 Iteration (Looping) Control Structure: Allows a block of code to be executed repeatedly, either a specific

number of times or as long as a certain condition is true. Common iteration structures include for and while

loops.

 Example (Python - for loop):

Python

for i in range(5):

 print("Iteration:", i)

The print statement is executed 5 times, with the value of i changing in each iteration.

 Example (Python - while loop):

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Python

count = 0

while count < 3:

 print("Count is:", count)

 count += 1

The print and count += 1 statements are executed repeatedly as long as the condition count < 3

is true.

Importance of Control Structures:

Control structures are fundamental to programming because they enable:

 Decision Making: Allowing programs to respond differently to different inputs or conditions.

 Repetitive Tasks: Automating tasks that need to be performed multiple times.

 Logical Flow: Structuring the execution of code in a clear and organized manner.

 Algorithm Implementation: Translating algorithms into executable programs.

 Problem Solving: Creating complex and sophisticated solutions to real-world problems.

 Flexibility and Dynamism: Making programs more versatile and able to handle various scenarios.

Without control structures, programs would only be able to execute a fixed sequence of instructions, limiting their

ability to solve complex problems or interact dynamically with users or data.

3.4.2 Selecting Appropriate Program Control Structures

(b) Select Appropriate Program Control Structure for a Given Situation:

Choosing the right control structure depends on the specific task or logic that needs to be implemented.

 Sequential: Use when instructions need to be executed in a linear order without any branching or repetition.

 Example: A simple script to calculate the average of three fixed numbers.

 Selection (if, if-else, if-elif-else): Use when the program needs to perform different actions based on

whether a condition is true or false.

 if: To execute a block of code only if a condition is true.

 Example: Displaying a warning message if a temperature exceeds a certain threshold.

 if-else: To execute one block of code if a condition is true and another block if it is false.

 Example: Checking if a user's password is correct and displaying either a success or failure

message.

 if-elif-else: To check multiple conditions in sequence and execute the block of code

corresponding to the first true condition. The else block (optional) is executed if none of the

conditions are true.

 Example: Assigning grades based on different score ranges.

 Iteration (for, while): Use when a block of code needs to be executed repeatedly.

 for loop: Typically used when the number of iterations is known beforehand or when iterating over

a sequence (like a list or range).

 Example: Printing the numbers from 1 to 10.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Example: Processing each item in a list of student names.

 while loop: Used when the number of iterations is not known beforehand and the loop continues as

long as a certain condition remains true. It's crucial to ensure that the condition eventually becomes

false to avoid an infinite loop.

 Example: Reading user input until a specific value is entered.

 Example: Simulating a process that continues until a certain state is reached.

Examples of Selecting Control Structures for Situations:

 Calculating the factorial of a number: A for loop (if iterating from 1 to the number) or a while loop (if

decrementing the number until 1) would be appropriate for the repeated multiplication.

 Validating user input (e.g., ensuring an age is not negative): An if statement to check the condition and

potentially a while loop to keep prompting the user until valid input is provided.

 Displaying a menu of options to the user and performing an action based on their choice: An if-elif-

else structure or a switch statement (if available in the language) would be suitable. A while loop might

be used to keep displaying the menu until the user chooses to exit.

 Processing all the records in a database: A loop (e.g., for loop iterating through the results of a query or a

while loop reading records one by one) would be necessary.

3.4.3 Using Control Structures in Programming

(c) Use Control Structures in Programming:

This involves writing actual code in a chosen programming language that implements the sequential, selection, and

iteration control structures. The specific syntax will vary depending on the language (e.g., Python, Java, C++).

Python Examples:

 Sequential: (Already shown in 3.4.1)

 Selection: (Already shown in 3.4.1)

 Iteration: (Already shown in 3.4.1)

Break and Continue Statements:

Within loops, break and continue statements can be used to alter the normal flow of execution:

 break statement: Immediately terminates the innermost loop it is contained within. Execution continues

with the statement immediately following the loop.

Python

for i in range(10):

 if i == 5:

 break

 print(i) # Output: 0 1 2 3 4

print("Loop finished")

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 continue statement: Skips the rest of the current iteration of the loop and proceeds to the next iteration.

Python

for i in range(5):

 if i == 3:

 continue

 print(i) # Output: 0 1 2 4

Writing and Executing Programs:

This step involves using a text editor or an Integrated Development Environment (IDE) to write the code containing

control structures and then using the appropriate compiler or interpreter to run the program and observe its behavior.

3.4.4 Appreciation of the Application of Control Structures

(d) Appreciate the Application of Control Structures in Programming:

Control structures are what make programs dynamic and intelligent. Their application is essential for:

 Creating Complex Logic: Allowing programs to handle intricate decision-making processes and perform

sophisticated sequences of actions.

 Developing Interactive Applications: Enabling programs to respond to user input and events in a

meaningful way.

 Automating Repetitive Tasks: Saving time and effort by allowing programs to perform the same

operations multiple times.

 Implementing Algorithms: Providing the tools to translate abstract algorithms into concrete, executable

code.

 Building Efficient Solutions: Choosing the right control structure can significantly impact the performance

and efficiency of a program.

 Handling Different Scenarios: Allowing programs to adapt their behavior based on varying conditions and

data.

 Developing Real-World Applications: Virtually all non-trivial software applications rely heavily on the

effective use of control structures to implement their functionality.

From simple scripts to complex operating systems and artificial intelligence algorithms, control structures are the

fundamental mechanisms that dictate how a computer program behaves and solves problems. Understanding and

applying them effectively is a core skill in computer programming.

3.4.5 How Boolean Expressions are Used in Programming

(Key Inquiry Question 1: How are Boolean expressions used in programming?)

Boolean expressions are expressions that evaluate to either True or False. They are fundamental to control

structures, particularly selection and iteration:

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Condition Evaluation: In if statements and while loops, a Boolean expression is evaluated to determine

whether the block of code within the structure should be executed.

o if condition:: The code block is executed if condition is True.

o while condition:: The code block is executed repeatedly as long as condition is True.

 Combining Conditions: Logical operators (and, or, not) are used to create more complex Boolean

expressions by combining simpler ones.

o if age > 18 and has_voted:: Both conditions must be true.

o if is_student or is_employed:: At least one condition must be true.

o if not is_admin:: The condition is_admin must be false.

 Storing Logical States: Boolean variables can be used to store the result of a Boolean expression and used

later in control structures.

Python

is_valid = (user_input == "yes")

if is_valid:

 # ... do something

 Controlling Loop Termination: The condition in a while loop is a Boolean expression that determines

when the loop will stop executing.

 Returning Logical Values from Functions: Functions can be designed to return Boolean values, which can

then be used in control structures.

Python

def is_even(number):

 return number % 2 == 0

if is_even(10):

 print("10 is even")

In essence, Boolean expressions provide the logical foundation for decision-making and repetition in programs,

allowing them to behave conditionally and iteratively based on the evaluation of these expressions.

3.4.6 Importance of Control Structures in Programming

 This is largely covered in 3.4.4,

Control structures are of paramount importance in programming because they:

 Enable Non-Linear Execution: They allow programs to deviate from a simple sequential flow, making

them capable of performing complex tasks.

 Implement Algorithms: Any algorithm that involves decision-making or repetition requires the use of

control structures in its programming implementation.

 Create Dynamic and Interactive Programs: Control structures allow programs to respond to different

inputs and user actions, making them interactive.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Automate Tasks Efficiently: Loops enable the efficient repetition of code, automating tasks that would be

tedious or impossible to do manually.

 Manage Complexity: By structuring the flow of execution, control structures help in organizing code and

managing the complexity of software development.

 Form the Basis of Computational Logic: They are the fundamental building blocks for implementing

logical reasoning and decision-making within computer programs.

SUB-STRAND 3.5: DATA STRUCTURES (14 Lessons)

3.5.1 Types of Containers in Programming

(a) Describe Types of Containers in Programming:

In programming, containers (also known as data structures) are ways to store and organize collections of data.

Different containers have different characteristics that make them suitable for various tasks. Here are some common

types:

 Lists (Arrays - conceptually similar in many languages): Ordered collections of items. Elements in a list

can be of different data types. Lists are mutable, meaning their elements can be changed, added, or removed

after creation. In some languages, a more restrictive ordered collection of elements of the same data type

might be referred to as an array.

 Example (Python List): [1, 2, "hello", 3.14, True]
 Characteristics: Ordered, mutable, can contain different data types.

 Arrays (in languages like C++, Java): Ordered collections of items of the same data type. The size of an

array is usually fixed at the time of creation.

 Example (Java Array): int[] numbers = {1, 2, 3, 4, 5};
 Characteristics: Ordered, usually fixed size, elements of the same data type.

 Dictionaries (Hash Maps or Associative Arrays): Collections of key-value pairs. Each key is unique and

is used to access its corresponding value. Dictionaries are unordered (in older Python versions, ordered in

newer ones) and mutable.

 Example (Python Dictionary): {"name": "Alice", "age": 30, "city": "Nairobi"}

 Characteristics: Key-value pairs, keys are unique, mutable, unordered (initially).

 Sets: Unordered collections of unique elements. Sets do not allow duplicate values. They support

mathematical set operations like union, intersection, and difference. Sets are mutable.

 Example (Python Set): {1, 2, 3, 4, 5}
 Characteristics: Unordered, contains only unique elements, mutable.

 Tuples: Ordered collections of items, similar to lists. However, tuples are immutable, meaning their

elements cannot be changed, added, or removed after creation.

 Example (Python Tuple): (1, 2, "hello", 3.14, True)
 Characteristics: Ordered, immutable, can contain different data types.

 Classes (as containers of attributes): While primarily used for object-oriented programming, classes can

be seen as containers that hold data (attributes or variables) and functions (methods) that operate on that

data. Objects are instances of classes.

 Example (Python Class):

Python

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

person1 = Person("Bob", 25)

 Characteristics: Can hold various types of data and functions, used to create objects.

 Abstract Data Types (ADTs): These are conceptual descriptions of how data is organized and the

operations that can be performed on it, without specifying a particular implementation. Examples include

stacks, queues, trees, and graphs. These are often implemented using the concrete container types mentioned

above.

 Example (Stack - conceptually): Follows the Last-In, First-Out (LIFO) principle. Operations

include push (add to top) and pop (remove from top). Can be implemented using a list.

 Example (Queue - conceptually): Follows the First-In, First-Out (FIFO) principle. Operations

include enqueue (add to rear) and dequeue (remove from front). Can be implemented using a list or a

dedicated queue data structure.

3.5.2 Using Containers in Programming

(b) Use Containers in Programming:

Using containers involves declaring, initializing, accessing, and manipulating the data stored within them based on

their specific properties and the syntax of the programming language.

 Declaration and Initialization:

 Lists (Python):

Python

my_list = [] # Empty list

numbers = [10, 20, 30, 40]

mixed = [1, "two", 3.0]

 Arrays (conceptual - similar to lists in Python): (See above)

 Dictionaries (Python):

Python

student = {"name": "Charlie", "grade": 11}

empty_dict = {}

 Sets (Python):

Python

my_set = {1, 2, 3}

empty_set = set()

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Tuples (Python):

Python

my_tuple = (1, 2, 3)

empty_tuple = ()

single_item_tuple = (5,) # Note the comma

 Accessing Elements:

 Lists and Tuples (by index - starting from 0):

Python

numbers = [10, 20, 30]

first_element = numbers[0] # 10

second_element = numbers[1] # 20

last_element = numbers[-1] # 30

 Dictionaries (by key):

Python

student = {"name": "Charlie", "grade": 11}

name = student["name"] # "Charlie"

grade = student["grade"] # 11

 Sets (cannot access directly by index): You typically iterate through a set or check for membership.

Python

my_set = {1, 2, 3}

for item in my_set:

 print(item)

is_present = 2 in my_set # True

 Manipulation (for mutable containers):

 Lists (Python):

Python

my_list = [1, 2, 3]

my_list.append(4) # [1, 2, 3, 4]

my_list.insert(0, 0) # [0, 1, 2, 3, 4]

my_list.remove(2) # [0, 1, 3, 4]

del my_list[1] # [0, 3, 4]

my_list[0] = -1 # [-1, 3, 4]

 Dictionaries (Python):

Python

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

student = {"name": "Charlie", "grade": 11}

student["age"] = 16 # Add a new key-value pair

student["grade"] = 12 # Update an existing value

del student["age"] # Remove a key-value pair

 Sets (Python):

Python

my_set = {1, 2, 3}

my_set.add(4) # {1, 2, 3, 4}

my_set.remove(2) # {1, 3, 4}

my_set.discard(5) # Removes if present, no error if not

 Tuples (immutable - cannot be changed after creation):
 Iteration: You can loop through the elements of most containers.

 Lists and Tuples:

Python

numbers = [1, 2, 3]

for num in numbers:

 print(num)

 Dictionaries (iterating through keys, values, or items):

Python

student = {"name": "Charlie", "grade": 11}

for key in student:

 print(key) # Prints keys

for value in student.values():

 print(value) # Prints values

for key, value in student.items():

 print(key, value) # Prints key-value pairs

 Sets: (See accessing elements)

3.5.3 Applying Sorting and Searching Techniques in Data Structures

(c) Apply Sorting and Searching Techniques in Data Structures:

Sorting and searching are common operations performed on data structures to organize and find specific elements

efficiently.

 Searching Techniques:
 Sequential Search (Linear Search): Examines each element in the container one by one until the

target element is found or the end of the container is reached. Simple but can be inefficient for large,

unsorted containers.

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

Python

def sequential_search(data, target):

 for index, item in enumerate(data):

 if item == target:

 return index

 return -1

my_list = [5, 2, 8, 1, 9]

index = sequential_search(my_list, 8) # Returns 2

 Binary Search: An efficient algorithm for finding an element in a sorted container. It repeatedly

divides the search interval in half. If the middle element is the target, the search is complete. If the

target is smaller, the search continues in the left half; if larger, in the right half.

Python

def binary_search(data, target):

 low = 0

 high = len(data) - 1

 while low <= high:

 mid = (low + high) // 2

 if data[mid] == target:

 return mid

 elif data[mid] < target:

 low = mid + 1

 else:

 high = mid - 1

 return -1

sorted_list = [1, 2, 5, 8, 9]

index = binary_search(sorted_list, 8) # Returns 3

 Sorting Techniques: Algorithms used to arrange the elements of a container in a specific order (e.g.,

ascending or descending).

 Insertion Sort: Builds the final sorted array one item at a time. It iterates through the input elements

and inserts each element into its correct position in the sorted part of the array. Efficient for small

datasets or nearly sorted data.

Python

def insertion_sort(data):

 for i in range(1, len(data)):

 key = data[i]

 j = i - 1

 while j >= 0 and key < data[j]:

 data[j + 1] = data[j]

 j -= 1

 data[j + 1] = key

my_list = [5, 2, 8, 1, 9]

insertion_sort(my_list) # my_list becomes [1, 2, 5, 8, 9]

Do
w

nl
oa

d
th

is
 a

nd
 o

th
er

 F
RE

E
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s

 Selection Sort: Repeatedly finds the minimum element from the unsorted part of the array and

swaps it with the element at the beginning of the unsorted part. Simple but generally less efficient

than insertion sort for larger datasets.

Python

def selection_sort(data):

 for i in range(len(data)):

 min_index = i

 for j in range(i + 1, len(data)):

 if data[j] < data[min_index]:

 min_index = j

 data[i], data[min_index] = data[min_index], data[i]

my_list = [5, 2, 8, 1, 9]

selection_sort(my_list) # my_list becomes [1, 2, 5, 8, 9]

 Bubble Sort: Repeatedly steps through the list, compares adjacent elements and swaps them if they

are in the wrong order. Passes through the list are repeated until the list is sorted. Simple to

understand but inefficient for large datasets.

def bubble_sort(data): n = len(data) for i in range(n - 1): for j in range(n - i - 1): if data[j] > data[j + 1]: data[j], data[j

+ 1] = data[j + 1], data[j]

 my_list = [5, 2, 8, 1, 9]

 bubble_sort(my_list) # my_list becomes [1, 2, 5, 8, 9]

    ``` 

 

  * **Quick Sort:** A highly efficient, divide-and-conquer sorting algorithm. It picks an 

element as a pivot and partitions the array around the pivot. Elements smaller than the pivot 

are placed before it, and elements greater than the pivot are placed after it. This process 

is recursively applied to the sub-arrays. Generally faster than insertion sort, selection 

sort, and bubble sort for large datasets. 

 

    ```python 

 def quick_sort(data):

 if len(data) <= 1:

 return data

 pivot = data[len(data) // 2]

 left = [x for x in data if x < pivot]

 middle = [x for x in data if x == pivot]

 right = [x for x in data if x > pivot]

 return quick_sort(left) + middle + quick_sort(right)

 my_list = [5, 2, 8, 1, 9]

 sorted_list = quick_sort(my_list) # sorted_list is [1, 2, 5, 8, 9]

    ``` 

3.5.4 Embracing the Use of Containers in Programming 

(d) Embrace the Use of Containers in Programming: 

Do
w

nl
oa

d 
th

is
 a

nd
 o

th
er

 F
RE

E 
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s



Containers are essential tools in programming, and understanding their use is crucial for effective software 

development. They offer numerous benefits: 

 Organization of Data: Containers provide structured ways to store and manage collections of related data, 

making programs more organized and easier to understand. 

 Efficient Data Access and Manipulation: Different container types are optimized for specific operations, 

allowing for efficient access, insertion, deletion, and modification of data. For example, dictionaries provide 

fast lookups based on keys. 

 Flexibility: Containers can hold various types of data (in some languages), allowing for the creation of 

versatile data structures. 

 Abstraction: Abstract data types (like stacks and queues) provide a high-level way to think about data 

organization and operations, hiding the underlying implementation details. 

 Algorithm Implementation: Many algorithms rely on specific data structures for their efficient 

implementation (e.g., binary search requires a sorted list or array). 

 Code Reusability: Standard container types are often provided by programming languages as built-in 

features or libraries, promoting code reusability and reducing development time. 

 Solving Complex Problems: Containers enable the creation of sophisticated data models that can represent 

complex relationships and facilitate the solution of real-world problems. 

3.5.5 Why are Data Containers Used in Programming? 

Data containers are used in programming for several critical reasons: 

 To Store Collections of Data: Programs often need to work with multiple pieces of related data. Containers 

provide a way to group these items together under a single name. 

 To Organize Data: Containers provide structure to data, making it easier to manage and access. Different 

structures offer different ways of organizing data (e.g., ordered lists, key-value pairs). 

 To Efficiently Access and Manipulate Data: The choice of container can significantly impact how 

efficiently data can be accessed, inserted, deleted, and modified. For example, accessing an element by index 

in a list or by key in a dictionary is typically very fast. 

 To Implement Algorithms: Many algorithms require specific ways of organizing data. For instance, sorting 

algorithms work on ordered collections, and graph algorithms use structures to represent nodes and edges. 

 To Abstract Data Management: Abstract data types allow programmers to focus on the logical operations 

on data without worrying about the underlying implementation details. 

 To Reuse Code: Programming languages provide built-in container types and libraries, allowing 

programmers to reuse well-tested and efficient data structures. 

 To Model Real-World Entities: Containers can be used to represent collections of objects or entities from 

the real world in a program. 

SUB-STRAND 3.6: FUNCTIONS (14 Lessons) 

3.6.1 Types of Functions in Modular Programming 

(a) Discuss Types of Functions Used in Modular Programming: 

Do
w

nl
oa

d 
th

is
 a

nd
 o

th
er

 F
RE

E 
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s



In programming, functions (also known as subroutines, procedures, or methods) are blocks of reusable code that 

perform a specific task. Modular programming is a software design technique that emphasizes separating the 

functionality of a program into independent, interchangeable modules, where each module contains everything 

necessary to execute only one aspect of the desired functionality. Functions are the primary building blocks of 

modular programs. 

There are two main types of functions: 

 Built-in Functions (Predefined Functions): These are functions that are provided by the programming 

language itself or its standard libraries. They are readily available for use without the need for explicit 

definition by the programmer. These functions perform common and frequently needed tasks. 

 Examples (Python): 

 print(): Displays output to the console. 

 len(): Returns the number of items in a sequence (like a list or string). 

 input(): Reads input from the user. 

 type(): Returns the data type of an object. 

 math.sqrt(): Calculates the square root (from the math module). 

 str(), int(), float(): Functions for type conversion. 

 Characteristics: Provided by the language or its libraries, ready to use, perform specific common 

tasks. 

 User-Defined Functions: These are functions that are created by the programmer to perform specific tasks 

that are not covered by built-in functions or to organize the program's logic into reusable blocks. 

 Example (Python): 

Python 

def greet(name): 

    print(f"Hello, {name}!") 

 

def calculate_area(length, width): 

    area = length * width 

    return area 

 Characteristics: Defined by the programmer, perform specific tasks relevant to the program's 

requirements, promote code reusability and modularity. 

3.6.2 Using Built-in and User-Defined Functions 

(b) Use Built-in and User-Defined Functions to Create a Modular Program: 

Creating a modular program involves breaking down the program's functionality into a set of functions (both built-

in and user-defined) that work together to achieve the overall goal. 

 Using Built-in Functions: Simply call the function by its name, providing any required arguments. 

 Example (Python): 

Python 

Do
w

nl
oa

d 
th

is
 a

nd
 o

th
er

 F
RE

E 
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s



user_name = input("Enter your name: ")  # Using the built-in input() function 

length = 5 

width = 10 

area = length * width 

print("The area is:", area)           # Using the built-in print() function 

number_of_letters = len(user_name)     # Using the built-in len() function 

print(f"Your name has {number_of_letters} letters.") 

 Using User-Defined Functions: First, define the function with a name, parameters (if any), and a block of 

code that performs the task. Then, call the function by its name, providing the necessary arguments. 

 Example (Python - Modular Program): 

Python 

# User-defined function to greet 

def greet(name): 

    print(f"Hello, {name}!") 

 

# User-defined function to calculate area 

def calculate_rectangle_area(length, width): 

    area = length * width 

    return area 

 

# Main part of the program (modular structure using functions) 

user_name = input("Enter your name: ") 

greet(user_name)  # Calling the user-defined greet() function 

 

length = float(input("Enter the length of the rectangle: ")) 

width = float(input("Enter the width of the rectangle: ")) 

rectangle_area = calculate_rectangle_area(length, width) # Calling 

calculate_rectangle_area() 

print("The area of the rectangle is:", rectangle_area) 

In this example, the program's logic is divided into two user-defined modules (greet and 

calculate_rectangle_area) and uses built-in functions (input, print, float) to interact with the user and 

display results. This modular structure makes the code more organized, readable, and reusable. 

3.6.3 Scope of Variables and Parameter Passing 

(c) Discuss the Scope of Variables and Parameter Passing Between Functions: 

 Scope of Variables: The scope of a variable refers to the region of the program where that variable can be 

accessed (used or modified). There are two main types of scope: 

 Local Scope: Variables that are defined inside a function have local scope. They can only be 

accessed from within that function. Once the function finishes execution, these local variables are 

destroyed, and their values are no longer accessible from outside the function. 

 Example (Python): 

Python 

def my_function(): 

Do
w

nl
oa

d 
th

is
 a

nd
 o

th
er

 F
RE

E 
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s



    local_var = 10 

    print("Inside function:", local_var) 

 

my_function()  # Output: Inside function: 10 

# print(local_var)  # This would cause an error (NameError: name 

'local_var' is not defined) 

 Global Scope: Variables that are defined outside of any function have global scope. They can be 

accessed from anywhere in the program, including inside functions. However, to modify a global 

variable from within a function in some languages (like Python), you might need to use a special 

keyword (e.g., global). 

 Example (Python): 

Python 

global_var = 20 

 

def another_function(): 

    print("Inside function:", global_var) 

 

another_function()  # Output: Inside function: 20 

print("Outside function:", global_var) # Output: Outside function: 20 

 

def modify_global(): 

    global global_var 

    global_var = 30 

 

modify_global() 

print("After modification:", global_var) # Output: After modification: 30 

 Parameter Passing Between Functions: Functions often need to receive data from the calling part of the 

program to perform their tasks. This is done through parameters. 

 Formal Parameters: These are the variables listed in the function definition's parentheses. They act 

as placeholders for the values that will be passed to the function when it is called. 

 Example (Python): In def calculate_area(length, width):, length and width are 

formal parameters. 

 Actual Parameters (Arguments): These are the actual values or variables that are passed to the 

function when it is called. They correspond to the formal parameters in the function definition. 

 Example (Python): In rectangle_area = calculate_area(5, 10), 5 is passed as the 

actual parameter for length, and 10 is passed as the actual parameter for width. 

 Return Types: Functions can optionally return a value back to the part of the program that called 

them using the return statement. The data type of the returned value is the return type of the 

function. If a function does not have a return statement, or if it has return without a value, it 

typically returns a special value (e.g., None in Python). 

 Example (Python): calculate_area has a return type that is the result of length * width. 

 Function Prototype/Signature: This specifies the function's name, the number and types of its 

parameters, and its return type (if any). It provides the interface of the function, indicating how it can 

be called and what to expect from it. 

Do
w

nl
oa

d 
th

is
 a

nd
 o

th
er

 F
RE

E 
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s



 Example (Conceptual): For def calculate_area(length: float, width: float) -> 

float:, the signature indicates a function named calculate_area that takes two float 

parameters (length and width) and returns a float value. 

 How Data is Passed: 
 Pass by Value: In some languages, when an argument is passed by value, a copy of the 

actual parameter's value is created and passed to the formal parameter. Changes made to the 

formal parameter inside the function do not affect the original actual parameter. 

 Pass by Reference (or Pass by Address): In other languages, or for certain data types, when 

an argument is passed by reference (or address), the formal parameter becomes an alias for 

the actual parameter. Changes made to the formal parameter inside the function directly affect 

the original actual parameter. 

 Pass by Object Reference (in Python): Python uses a mechanism that is often described as 

"pass by object reference" or "call by sharing." For immutable objects (like numbers, strings, 

tuples), it behaves like pass by value. For mutable objects (like lists, dictionaries), changes 

made to the object within the function can affect the original object outside the function. 

3.6.4 Appreciation of Modularity in Programming 

(d) Appreciate the Importance of Modularity in Programming: 

Modularity, achieved through the use of functions and other modular units (like modules or classes), is a crucial 

principle in software development for several reasons: 

 Code Reusability: Functions can be called multiple times from different parts of the program, reducing 

code duplication and making the program more concise. 

 Improved Organization: Breaking down a program into smaller, logical modules (functions) makes the 

code easier to understand, read, and navigate. 

 Easier Debugging and Testing: Individual functions can be tested and debugged independently, making it 

easier to identify and fix errors. 

 Enhanced Maintainability: Changes or bug fixes in one function are less likely to affect other parts of the 

program, making maintenance easier. 

 Increased Collaboration: In large projects, different developers can work on different modules (functions) 

concurrently, improving development efficiency. 

 Abstraction: Functions allow programmers to abstract away the details of a specific task. The calling code 

only needs to know what the function does, not how it does it. 

 Problem Decomposition: Complex problems can be broken down into smaller, more manageable sub-

problems, each of which can be implemented as a separate function. 

 Scalability: Modular programs are generally easier to scale and extend with new features by adding new 

modules (functions) without significantly altering existing code. 

3.6.5 What are the Roles of Functions in Modular Programming? 

Functions play several key roles in modular programming: 

 Encapsulation: Functions encapsulate a specific set of instructions that perform a particular task, hiding the 

implementation details from the rest of the program. 

Do
w

nl
oa

d 
th

is
 a

nd
 o

th
er

 F
RE

E 
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s



 Abstraction: They provide a higher level of abstraction, allowing programmers to think about the program 

in terms of tasks rather than individual low-level operations. 

 Code Organization: Functions help to structure the program logically, making it easier to understand the 

flow of execution and the purpose of different code sections. 

 Reusability: Once a function is defined, it can be called multiple times from different parts of the program, 

promoting code reuse and reducing redundancy. 

 Testability: Individual functions can be tested in isolation to ensure they work correctly, simplifying the 

overall testing process. 

 Maintainability: Changes or bug fixes within a function are typically isolated and less likely to affect other 

parts of the program. 

 Decomposition: Functions facilitate the breaking down of complex problems into smaller, more manageable 

sub-problems, each handled by a separate function. 

 

 

Get more high quality content from www.kenyaplex.com 

 

Do
w

nl
oa

d 
th

is
 a

nd
 o

th
er

 F
RE

E 
m

at
er

ia
ls

 fr
om

 h
tt

ps
:/

/t
ea

ch
er

.co
.k

e/
no

te
s




