## **SECTION A (25 marks)**

Answer all the questions in this section in the spaces provided.

1. **Figure 1** shows the image formed by a plane mirror when an object is placed in front of the mirror.

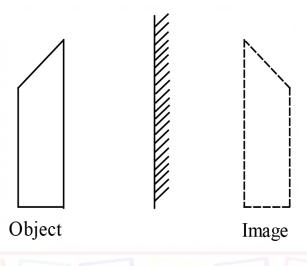



Figure 1

Apart from the image being virtual and of the same size as the object, state one other characteristic displayed in the figure.

(1 mark)

2. A student observed that when removing a polyester sweater, a cracking sound was produced. Explain this observation.

(2 marks)

3. Explain what happens to the potential difference of a charged parallel plate capacitor when the distance of separation between the plates is reduced.

(3 marks)

| A student is provided with a steel needle and a copper coin. Describe how the star magnet to identify which of the two materials is magnetic. |                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                               | (2 marks)                                                                                                                                                     |
| Figure 2 shows an object 'O' and its image 'I' as formed by a concave mirror.                                                                 |                                                                                                                                                               |
| Complete the ray diagram and indicate the focal length of the mirror.                                                                         | (2 marks)                                                                                                                                                     |
| Using domain theory, explain how electric current produces a magnetic effect in electromagnet.                                                | in an<br>(3 marks)                                                                                                                                            |
|                                                                                                                                               |                                                                                                                                                               |
| State the meaning of the term <i>periodic time</i> of a wave.                                                                                 | (1 marks)                                                                                                                                                     |
| Explain why sound energy travels faster in a metal block than in water.                                                                       | (2 marks)                                                                                                                                                     |
|                                                                                                                                               | Using domain theory, explain how electric current produces a magnetic effect in electromagnet.  State the meaning of the term <i>periodic time</i> of a wave. |

| 10. | State the meaning the term <i>refractive index</i> of water.                    | (1 mark)                          |
|-----|---------------------------------------------------------------------------------|-----------------------------------|
| 11. | Figure 3 shows a cell connected to a bulb and a switch.                         |                                   |
|     |                                                                                 |                                   |
|     | When the switch is closed, the bulb lights. Explain how the cell drives the ele | ectrons in the circuit. (2 marks) |
|     |                                                                                 |                                   |
| 12. | An electric bulb is marked 60 W, 240 V. Determine the energy the bulb consu     | umes in one minute.               |
|     |                                                                                 |                                   |
| 13. | (a) State what is meant by <i>long sightedness</i> as an eye defect.            | (1 mark)                          |
|     | (b) Explain how long sightedness can be corrected using a lens.                 | (2 marks)                         |
|     |                                                                                 |                                   |



## **SECTION B (55 marks)**

Answer all the questions in this section in the spaces provided.

**14.** (a) **Figure 4** shows an electromagnet set-up.

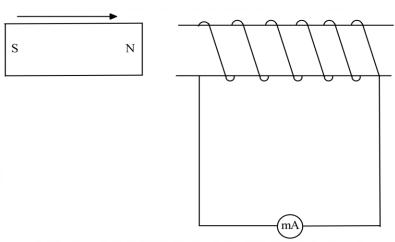



Figure 4

When the magnet is moved towards the coil as shown by the arrow, the milliammeter reads a maximum current of 0.1 mA.

|             | (i.)       | Explain how the current is generated in the circuit.                      | (3 marks) |
|-------------|------------|---------------------------------------------------------------------------|-----------|
|             |            |                                                                           |           |
|             |            |                                                                           |           |
| • • • • • • | (ii.)      | Using the same set-up, state how the current observed in the n increased. |           |
|             |            |                                                                           |           |
|             | <br>(iii.) | On the figure, indicate with an arrow the direction of the induc          |           |

coil.

(1 mark)

|     |       | (iv.)    | Explain why the current flows in the direction shown in part (iii.).                | (3 marks)                  |
|-----|-------|----------|-------------------------------------------------------------------------------------|----------------------------|
|     |       |          |                                                                                     |                            |
|     |       |          |                                                                                     |                            |
|     | (b)   |          | nily observed that after purchasing a refrigerator, the monthly electri             | •                          |
|     |       |          | ased by Ksh 2000 in a 30 day month. Given that the cost of electricit               |                            |
|     |       | fridge   | 400 and the fridge was sed for 24 hours per day, determine the power.               | er rating of the (3 marks) |
|     |       |          |                                                                                     |                            |
|     |       |          |                                                                                     |                            |
|     |       |          |                                                                                     |                            |
|     | ••••• |          |                                                                                     | •••••                      |
|     | ••••• | •••••    |                                                                                     | ••••••                     |
| 15. | (a)   | (i.)     | State <b>three</b> uses of the electron gun in the cathode ray oscilloscop          | e. (3 marks)               |
|     |       |          |                                                                                     |                            |
|     |       |          |                                                                                     |                            |
|     | ••••• | ········ |                                                                                     | -111                       |
|     |       | (ii.)    | State the reason why the inner wall of a cathode ray oscilloscope to with graphite. | (1 mark)                   |
|     |       |          |                                                                                     |                            |
|     |       |          |                                                                                     |                            |
|     |       |          |                                                                                     |                            |
|     |       | (iii.)   | Describe how a cathode ray oscilloscope can be used to measure t                    | _                          |
|     |       |          | cell.                                                                               | (3 marks)                  |
|     | ••••• | •••••    |                                                                                     |                            |
|     |       |          |                                                                                     |                            |
|     |       |          |                                                                                     |                            |

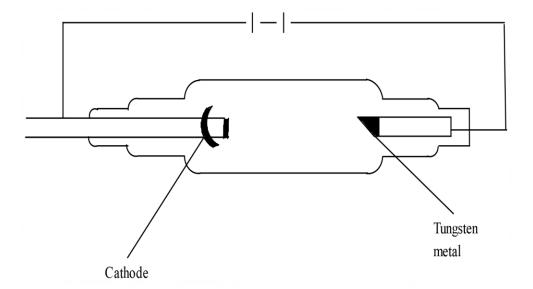



Figure 5

- (i) On the figure, show with an arrow:
  - I. the direction of the electron beam in the tube;
- (1 mark)

II. the direction of the x-rays produced.

- (1 mark)
- (ii) State **two** ways by which focusing of the electron beam is achieved in the tube.

(2 marks)

| ` / | (i)  | State the meaning of the term <i>photoelectric emission</i> .          | (1 mark)                       |
|-----|------|------------------------------------------------------------------------|--------------------------------|
|     |      |                                                                        |                                |
|     | (ii) | Explain how the energy of a photon is used by the electrons demission. | luring photoelectric (2 marks) |
|     |      |                                                                        |                                |

|            |                                                                                                 | (2 marks)  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------|------------|--|--|--|
|            |                                                                                                 |            |  |  |  |
|            |                                                                                                 |            |  |  |  |
| •••••      |                                                                                                 |            |  |  |  |
| (c)        | When a certain metal surface is illuminated with a light of wavelength $4.0 \times 10^{-7} m$ , |            |  |  |  |
| <b>、</b> / | emits photoelectrons whose kinetic energy is $6.6 \times 10^{-20} J$ . (Planck's constant is h  |            |  |  |  |
|            | $6.6 \times 10^{-34}$ Js and speed of light $c$ is $3.0 \times 10^{10}$ m/s.)                   |            |  |  |  |
|            | Determine the:                                                                                  |            |  |  |  |
|            | (i) energy of a photon of the incident light.                                                   | (3 marks)  |  |  |  |
|            |                                                                                                 |            |  |  |  |
| •••••      |                                                                                                 |            |  |  |  |
| •••••      |                                                                                                 |            |  |  |  |
|            | leacher.co.k                                                                                    |            |  |  |  |
|            | (ii) work function of the metal surface.                                                        | (3 marks)  |  |  |  |
|            | (ii) Work remetion of the metal surface.                                                        | (5 marilo) |  |  |  |
| •••••      |                                                                                                 |            |  |  |  |
|            |                                                                                                 |            |  |  |  |
|            |                                                                                                 |            |  |  |  |
|            |                                                                                                 |            |  |  |  |
| (a)        | Explain how visible tracks of radiations are formed in the expansion cloud chamber v            |            |  |  |  |
| •          | the moist air in the chamber expands.                                                           | (3 marks)  |  |  |  |
|            |                                                                                                 |            |  |  |  |
|            |                                                                                                 |            |  |  |  |

(1 mark)

(b) The following equation shows a radioactive decay series.

State the name of the radiation emitted.

$$^{234}_{92}U \rightarrow ^{230}_{90}Th + Radiation$$

(i)

- .....
  - (ii) State what would be observed on the leaf of a positively charged electroscope when the radiation identified in (i) passes close to the cap of the electroscope.

    (3 marks)

- (c) A certain radioactive substance has a half life of 8 hours. 10 g of the sample has an activity of 90 counts per minute. Determine the:
- (i) quantity of the sample that is active after 24 hours; (1 mark)
- (ii) activity of the remaining sample after 24 hours. (1 mark)
- 18. (a) Use the energy band theory to explain why intrinsic semiconductors do not conduct at absolute zero temperature. (2 marks)



(b) Figure 6 shows a p - n junction diode connected to a source of e.m.f.

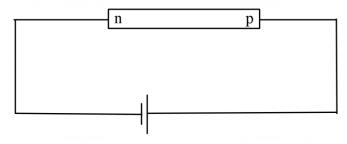



Figure 6

- (i) State the type of biasing shown in the figure. (1 mark)
  - (ii) Explain what happens to the charge carriers at the junction. (3 marks)

(iii) In the space provided, sketch the current – voltage graph for the diode in the figure. (1 mark)

(c) **Figure 7** shows a waveform generated by an alternating current source.

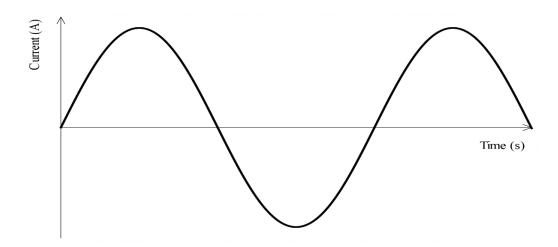



Figure 7

(i) On the axis provided, sketch the waveform obtained when a p-n junction diode is connected in series with the source.



| (11) | Explain the snape of the waveform drawn in part $(c)(1)$ . | (2 marks) |
|------|------------------------------------------------------------|-----------|
|      |                                                            |           |
| <br> |                                                            |           |
| <br> |                                                            |           |
|      |                                                            |           |

## THIS IS THE LAST PRINTED PAGE