Teacher.co.ke

COMPUTER STUDIES FORM THREE TERM 2 2025

OPENER EXAMINATION

MARKING SCHEME

- 1. Define the following terms. (4 marks)
 - i. Bit
 - ✓ Binary digit 0 or 1
 - ii. Byte
 - ✓ Group of bits (mostly 8) used to represent a single character
 - iii. Nibble
 - ✓ Half of a byte
 - iv. Word
 - **✓** Two or more bytes
- 2. Give two reasons for the use of binary numbers to represent data in computers (2marks)
 - ✓ Human languages are complex hence it is easier to develop machines in that takes human language and encode it in binary form.
 - ✓ Digital devices and small in size, consume less energy and are more reliable than analog.
- 3. Briefly explain how data is represented and interpreted in optical media such a compact disk. (3 marks)
 - ✓ Shinny surface of the disk is made up of small lands and bits.
 - ✓ When light is directed to trike the shiny surface the raised lands reflect back light onto a photoelectric cell which is interpreted as a 1.
 - ✓ The pits scatter light there the computer interprets the absence of light on the cell as a 0.
- 4. Give two reasons why we use higher number systems such octal and hexadecimal to represent data in computing. (2 marks)
 - ✓ They can encode more than one binary digit hence data compression.
 - ✓ They ease transmission and quickens error detection by reducing the long streams of binary.
- 5. Convert the following decimal numbers to their binary equivalent.
 - i. 269₁₀ (2 marks)
 - ✓ 100001101₂
 - ii. 13.375₁₀ (3 marks)
 - ✓ 1101.011₂
 - iii. 26.45₁₀(3 marks)
 - ✓ 11010.01[1100] recurring.
- 6. Convert the following numbers to their equivalent values in the number system given in the brackets.
 - i. 1010011.1101₂ (octal) (4 marks)
 - **✓** 123.648
 - ii. 97DB₁₆(binary) (2marks)
 - ✓ 1001011111011011₂
 - iii. ABCD₁₆(Octal) (3 marks)

- ✓ 125715₈
- iv. 576₈ (Denary) (3 marks)
 - **✓** 382₁₀
- 7. Write in full. (4 marks)
 - i. ASCII
 - ✓ American Standard Code for Information Interchange
 - ii. BCD
 - **✓** Binary Coded Decimal
 - iii. EBCDIC
 - ✓ Extended Binary Coded Decimal Interchange Code
 - iv. Bit
 - **✓** Binary Digit
- 8. Perform the following binary arithmetic and give your answer in decimal notation.
 - i. $10101.101_2 + 11.0111_2$ (3 marks)
 - ✓ 11001.0001₂
 - ii. $1010.011_2 11.0111_2$ (3 marks)
 - ✓ 110.1111₂
- 9. Use 8-bit twos complement to perform the following subtraction and leave your answer in decimal notation.
 - i. 45_{10} - 31_{10} (3 marks)
 - $45_{10} 00101101_2$
 - $31_{10} = 000111111_2$
 - 2 complements of 31 = 11100001
 - Summation = $(1)00001110 = 14_{10}$
 - ii. 18₁₀-25₁₀ (4 marks)
 - $18_{10} = 00010010_2$
 - $25_{10} = 00011001_2$
 - 2 complements of $25 = 11100111_2$
 - **Summation** = 11111001_2
 - Subtract $1 = 11111000_2$
 - **Uncomplemented** = $00000111_2 = -7$
- 10. Differentiate between an analog signal and a digital signal. (2 marks)
 - ✓ Analog signals are in the form of a smooth continuous sine wave while digitals signals are discrete square waves.