
PHYSICS FORM 2

TERM 1 2025

MARKING SCHEME

SECTION A

1.

Check for correct drawing

Main scale $3.3 \sqrt{}$

Vernier scale 0.06 √

2. Volume of water displaced = $100 - 60 = 40 \text{cm}^3$

Volume of water displaced = Vol. of stone = $40 \text{cm}^3 \sqrt{}$

$$P = \frac{M}{V} \text{(do not award a mark for the formula)}$$

$$P = \frac{567g}{40cm^2} = 14.175g/cm^3 \text{ (correct substitution)} \sqrt{}$$

 $P = 14.18g/cm^3$ (Answer must be given correct to 2d.p)

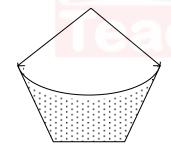
3. Weight on Earth = 600N

Weight on Planet = 450N

Weight, W = Mg

$$M = \frac{W}{g}$$

Mass of body =
$$\frac{600N}{10N/Kg}$$
 = $60Kg\sqrt{}$


$$g = \frac{w}{m}$$

$$g = \frac{450N\sqrt{}}{60Kg} = \frac{7.5N}{Kg}\sqrt{}$$

Correct substitution $\sqrt{}$

Correct answer with correct units $\sqrt{}$

- 4. The force of cohesion within the mercury is greater than the force of adhesion between mercury and glass $\sqrt{}$. The mercury therefore sinks down $\sqrt{}$ the tube to enable mercury molecules to keep together $\sqrt{}$.
- 5. Temperature rise and impurities lower the surface tension of water $\sqrt{}$
- 6. a)

Check for correct drawing √

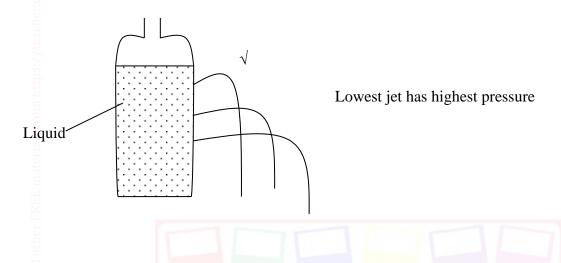
Check on the curvature $\sqrt{}$

- b) The unbalanced $\sqrt{\text{surface tension}}\sqrt{\text{pulls the thread tight}}$
- 7. h = 760 mm

$$p = 1.36 \times 10^4 \text{ Kg/m}^3$$

$$p = ?$$

$$p = pgh$$

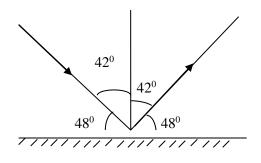

$$p = 1.36 \ x \ 10^4 x \ 10 \ x \ \frac{760}{1000}$$

Check on the conversion $\sqrt{}$

$$P = 103,360 \text{ N/M}^2$$

Accept P =
$$103,360$$
 pa $\sqrt{}$ check for correct units

- 8. The external pressure (atmospheric) is lower than the internal pressure $\sqrt{\cdot}$: therefore the capillaries break $\sqrt{\cdot}$.
- 9. The bottle with hole experiment if diagram used; check for labeling $\sqrt{\cdot}$: Procedure, observation and conclusion $\sqrt{\cdot}$.


10. Solid – particles very close, hence low kinetic energy√.

Liquids – particles fairly free, moderate kinetic energy √

Gases – particles very free, high kinetic energy $\sqrt{}$

11. The metal blade conducts heat from the hand but the wood cannot $\sqrt{}$

12.

$$90 - 48 = 42^{0}\sqrt{}$$

Drawing a normal

- 13. $(20 \times 0.3) + (20 \times 0.3)\sqrt{}$
- or 20 x 0.6

$$6 + 6 = 12NM\sqrt{}$$

Check for correct units

Check for presence of the neutral zone√

SECTION B

14. i. Smoke particles – smoke particles are larger than air molecules and light enough to move when bombarded by air molecules $\sqrt{}$

Lens – focuses the light from the lamp on the smoke particles, causing them to be observable Microscope – enlarges/magnifies the smoke particles so that they are visible $\sqrt{}$

ii. Smoke particles more randomly/zigzag $\sqrt{}$

Air molecules bombard the smoke particles

Air molecules are in random motion

- iii. The speed of motion of smoke particles will be observed to be lighter/faster/speed increases√.
- 15. a) Mass of water = $66.1 42.9\sqrt{}$

$$=23.2g\sqrt{}$$

b) Volume =
$$\frac{\text{Mass}}{\text{Density}} = \frac{23.2\text{g}}{1\text{g/cm}^3}$$

$$= 23.2 \text{cm}^3 \sqrt{}$$

Working must be shown

c) Volume of density bottle = volume of water

Volume of bottle =
$$23.2 \text{cm}^3 \sqrt{}$$

d) Mass of soil = 67.2 - 42.9

$$= 24.3g \sqrt{}$$

e) Mass of water that filled the space above the soil

$$= 82.0 - 67.2$$

= 14.8g $\sqrt{}$

f) Volume of soil

$$Volume of water = \frac{Mass}{Density} \sqrt{}$$

$$=\frac{14.8g}{1g/cm^3}$$

$$= 14.8 \text{cm}^3 \sqrt{}$$

Volume of soil =
$$23.2 - 14.8$$

$$= 8.4 \text{cm}^3 \sqrt{}$$

g) The density of the soil = $\frac{\text{Mass}}{\text{Volume}}$

$$=\frac{24.3}{8.4}\sqrt{}$$

$$= 2.893 \text{g/cm}^3 \sqrt{}$$

16. a) A – Seal and insulator $\sqrt{}$

 $B-Zinc\ case \sqrt{}$

C-Mixture of carbon and manganese (IV) oxide $\sqrt{}$

D – Carrbon rod $\sqrt{}$

- b) Zinc case acts as a negative electrode $\sqrt{}$
- c) i) Polarisation√

Remedy – Adding a depolarizer e.g potassium dichromate√

ii) Local action√

Remedy – By amalgamation $\sqrt{}$

 $Accept-use\ of\ pure\ zinc\ or\ coating\ zinc\ with\ mercury\ \sqrt{}$