KENYA CERTIFICATE OF SECONDARY EDUCATION

KENYA NATIONAL EXAMINATION COUNCIL 2023

PHYSICS PAPER 232/1

COORDINATED MARKING SCHEME

NB:

The underlined parts of the response are key marking points.

The words/phrases in brackets do not have to be there. They may miss in the response.

The absence of 0 when it is subtracted or added to a number is accepted. Eg Q 18b

The absence of 1 where a number is multiplied or divided with one is accepted. Eg Q4

SECTION A					
NO	EXPECTED RESPONSE	MARKS	SIDE NOTES		
1.	Determination of the age of matter/fossils by carbon	1	The response		
	dating/radioactivity		must show		
	Or		aspects in both		
	Carbon dating in archeology.		physics and		
	Or		history		
	Study of historical photos eg using magnifying equipments.				
	Or				
	Use of magnetim in compass during early day exploration.				
2.	Due to weaker intermolecular forces in gases (than in liquids).	1	Do not accept		
	Or		lighter for		
	Gases have lower density.		lower density		
	Or		Comparative		
	Gas molecules have higher kinetic energy.		wording a must		
3.	i. Tank A/A/silverly tank√	1			
	ii. Tabk A is a (poor absorber and) <u>a poor emitter of heat</u> $$,		Comparative		
	hence <u>most of the heat gained during the day will be</u>	2	wording a must		
	$\sqrt{ ext{retained}}$ making tank A to have warmer water (than tank		for warmer		
	B) / <u>tank A has warmer water</u> (than tank B)				

4.	(sum of) clockwise moments = (sum of) anticlockwise moments			3	Award ½ mk
	Or $F_1d_1 = F_2d_2$ $\sqrt{(\text{do not accept } W_1d_1 = W_2d_2)}$				for correct
	$F \times 20 = 1 \times 60 \sqrt{0r F \times 0.2} = 1 \times 0.6$				answer without
	F = 3N√ F = 3N				unite and no
	Accept $F \times 20 = 60$ for substitution				mark for
			-		wrong units
5.	F=ke√ F=ke	e√	F=ke√	2	Award ½ mk
			0.4 = ke		for correct
	$k = \frac{2.0 \times 10^{-1}}{10^{-1}}$	$k = \frac{0.2}{$	0.6 = k(e + 1.6)		answer without
	16×10^{-2}	1.6	e = 3.2 cm		units and no
	K = 12 5N/m√ K = C	.125N/cm√			mark for
			$k = \frac{1}{3.2} = 0.125 \text{ N/cm} \sqrt{10}$		
			Or		wrong units
			$k = \frac{0.6}{0.6} = 0.125 \text{ N/cm}$		
			1.6 + 3.2		
6.	a) In anticlockwise	direction/to t	he left/cork side/open end	1	
	,				
	b) On heating air (ir	the tube) ex	pands√ (and cork moves/is		
	pushed to the lef	t) hence shif	ts the position of the centre	2	
	of aravity away f	rom pivot √	······································	_	
	Or				
	More anticlockwise moment than clockwise moment.				
7	As K spins air below moves faster the air above $\sqrt{\text{creating a region}}$			1	Comparative
	of lower pressure below $\sqrt{/}$ pressure difference			1	wording a must
	Therefore K experiences areater acceleration due to external			-	
	force/ greater downward force \sqrt{acting} on it which is not			1	
	<u>force</u> / greater downward force v_acting on it which is not			1	
8	Object move with a cont	ain initial val	city then decelerates non		
0.	uniformly to a stor /:+	docrocosing d	acalanation (not and then)	1	
	Then it accelerated for	uniformly /	vith increasing accolonation.	1	
	I nen it accelerates non-unitormiy / with increasing acceleration			1	
0	Dack to starting velocity.				Ean fannsula
9.		$\begin{bmatrix} KE \\ = \frac{1}{n} \end{bmatrix}$	$nv^2 \& v = \sqrt{2gh}\sqrt{\text{(both)}}$	3	ror tormula
	$KE_{(max)} = mgh$	2			mark in the
			$v = \sqrt{2 \times 10 \times 0.2}$		second option
	= 0.25 x 10 x 0.2√				accept $KE = \frac{1}{2}mv^2$
		v = 2m/s			+ any linear
	V_LC.0 =				motion
					equation(s)
			$LE = \frac{1}{2} \times 0.25 \times 2^{2} \text{V}$		which will aive
			.		v
		= 0.5J√			Award 1 mk

			for correct
			answer without
			units and no
			mark for
			wrong units
10.	 Raduis of the curve/path. Accept radius 	Any	
	• Mass (of the car)	one	
	 Nature of the surface/friction/friction between the 	1	
	surfaces Condition of the transf		
11	Condition of the types Steam has (high) latent hast (of venerization) (more host energy)	1	
11.	(ner unit mass) (than boiling water)	1	
12	Force pump can lift warer to a beight greater than	1	
	10m/barometric height/atmospheric height.	-	
	Or		
	Can lift water to greater height (comparative)		
	Or		
	Force pump provides continous flow of water/liquid		
13.	• (parallax) error when reading temperature scale & height.	1	
	Wrong reading because of non-uniform tube./wrong	Any	
	reading of volume.	one	
	Fluctuation of pressure during the experiment.		
	CECTTONI R	20	
1.4	SECTION B		
14.	a)		
	Flas higher expensivity of more consistive thus eived.	2	
	Flas <u>nigher expansivity</u> V/more sensitive thus gives	_	
	a longer column than mercury tro the same		
	Temperature change		
	b)		
	i		
	T. X allows for expansion ((of the liquid)		
	1. $\wedge \underline{\text{anows for expansion}} \lor (of the liquid)$	1	
	II. To push the halces V (so that maximum and	1	
	minimum remperaturs can be measured)		
	ii Steel is magnetic ,/hence allows the resetting of	1	
	the thermometer	-	
	iii When the sorrounding temperature rises the		
	alcohol expandes nuching the mencury which pucked		
	acconor expands v pashing the file car y which pashes	3	

		<u>index B upwards.</u> $$ When the temperature drops alcohol contracts but <u>index B remains at the highest temperature point</u> $$		
	iv.	hence readingf is noted when required. Mercury has stronger cohesive forces than adhesive forces.	1	
	v. Allow ex	<u>Heat/warm the neck of the bottle \sqrt{to} increase its <u>size/expand</u> \sqrt{thus} allowing the cork to be removed.</u>	2	
	Tota		11	
15.	a) i.	Due to <u>friction/frictional force</u> √ Kinetic energy of the trolley is used to work against friction √ (hence it stops eventually when all the energy is used)	2	
	ii.	When the vehicle is stopped, the passenger <u>tends</u> to continue moving $$ (with the speed of the vehicle) due to <u>inertia</u> $$ (causing the forward jerk)	2	
	b) X It att <u>viscou</u> Or Wate (than	tains a <u>higher (terminal) velocity</u> $\sqrt{\text{caused by less}}$ <u>us drag</u> $\sqrt{\text{due to water}}$ r is <u>less viscous/less sticky/ has lower viscosity</u> $$ glycerine) hence allows <u>higher (terminal) velocity</u> . $$	1 2	
	c) W =n = 60(=615 Allow Allow throw	n(g +a) $$ Or (10 +0.25) $$ 60(g + 0.25) $$ N $$ =15+ 60g $$ v no units v use of other correct values of g and follow ugh.	3	
	d)	 Lubrication/oiling/greasing Use of rollers. 	1	

	 Use of ball bearings. 	any	
	 Air cushioning. 		
	 Smoothening. 		
	 Magnetic repulsion. 		
	 Levitation. 		
	Total	11	
16.	 a) i. Q sinks deeper/ more. √ ii. So as to displace equal volume of water√ to achieve equal upthrust as P. √ Or it has a smaller cross sectional area to achieve equal upthrust as P. 	1 2	
	Or i. Q sinks.√ ii. It will displace less volume of water compared to P√ hence will experience less upthrust√		
	b) i. RD of metal = $\frac{\text{wight of block(in air)}}{\text{loss of weight in water(upthrust in water)}} $ $= \frac{0.6}{0.6 - 0.5} \sqrt{=} \frac{0.6}{0.1}$ $= 6$	3	
	ii. RD of the liquid = $\frac{upthrust in liquid L}{upthrust in water} $ = $\frac{0.6 - 0.54}{0.6 - 0.5} = \frac{0.06}{0.1} $ = 0.6	3	
	 iii. Density of liquid L = RD L X density of water√ = 0.6 × 1000 = 600kg/m³ √ Or 0.6 × 1 = 0.6g/cm³ Or 0.6p 	2	Look out for Transfer of Error (TE) from part ii
	Total	11	

Teacher.co.ke

17.	a)		
	i.		
	I. Diameter of patch = 8cm		
	Area of patch = $\pi r^2 $		
	$=3142 \times 4 \times 4$	2	
	$= 50.272 \text{ cm}^2 $		
	Or		
	$\frac{22}{7}$ × 4 ×4		
	-50.29 cm^2 (4 sf must)		4 of must
	TT diameter of molecule $-\frac{volume of drop}{\sqrt{1-volume of drop}}$		
	area of patch		
	Or		
	$\frac{4}{2}\pi r^3 = \pi R^2 h$	3	
	Where h = diameter/size/thickness of molecule		
	6.55×10^{-5}		Look out for
	$d = \frac{1}{50.272} \sqrt{10}$		Transfer of
	$=1.302 \times 10^{-6} \text{cm}$		Error (TE) from
			part i
	ii.		
	\circ The oil drop is a <u>perfect</u> sphere.		
	\circ The oil patch is a <u>perfect</u> circle.	2	
	\circ The patch is monolayer/ one molecule thick.		
	 The patch is <u>perfect</u> cylinder one molecule thick 		
	iii. (parallax) error when measuring diameter of the		
	patch. $$		
	Temperature changes during experiment which might	2	
	affectthe diameter of the patch. $$		
	b) Obtain the volume spilled $$		
	Use the thickness of the molecule of theoil to	2	
	calculate the extent/area of spillage using $A = V_{+}$		
	Total	11	

Teacher.co.ke

18.	a)			
	i. M has hi reading (gher reading (than L) or L has lower (than M)	1	
	ii. M has lo requires (same) to	wer <u>specific</u> heat capacity $$ hence <u>less</u> heat energy $$ to cause the emperature change as L or by 1 ⁰ C.	1 1	
	iii. Lagging u Covering Polishing	using a poor conductor of heat the calorimeter. /painting shiny	2	
	b) Heat lost (by wa Or m _w c _w Δ	ter) = heat gained (by ice) $\sqrt{T} = m_i L_f + m_i c_w \Delta T$	1	
	0.05×4200×(25-T) √= 0.0 T = 15.15 ⁰ C√ at least	005x3.5x10 ⁵ +0.005x 4200 x(T-0)√ 4 sf	2 1	
	c) When covered, t <u>increases</u> √_hence making the food hence cooking fa	he <u>pressure above the food</u> e <u>raising the boiling point</u> √ of water to boil at a higher temperature ster.	2	
	Total		11	
	SECTION B TOTAL		55	

Teacher.co.ke