FORM 2 PHYSICS

APRIL HOLIDAY ASSIGNMENT - 2024

1. Define the term moments.
2. State the principle of moments.
3. Define the term moment of a force.
4. Name four activities which produce a turning effect
5. Why is it very difficult to open a door from a point too close to hinges?
6. Explain why it is difficult to steer a bicycle by gripping the centre of the handlebars. (2mks)
7. A load of $\mathbf{9 0 0} \mathbf{N}$ is placed $\mathbf{3 m}$ from a pivot. Calculate the moment due to the load.
8. A girl of mass $\mathbf{6 0 k g}$ sits $\mathbf{4 m}$ from a pivot. Calculate the moment due to the girl.
9. Calculate the moment due to the force \mathbf{F} below.

10. A uniform nefer $45 \mathrm{~S}_{\text {pivoted at }}$ its centre is balanced by a force of $\mathbf{1 0 0 N}$ at $\mathbf{2 0} \mathbf{c m}$ and another force of \mathbf{F} at the 75 cm mark.

11. Three forces are applied on a meter-ruler as shown.

12. The figure below shows three forces applied on a uniform metal rod of length $\mathbf{2 0 m}$.

Calculate the position \mathbf{X} where the force of $\mathbf{2 4 0 N}$ is placed.
13. The figure below shows a meter rule balanced by four forces at its centre.

(i) Determine the weight \mathbf{W}.
(ii) What is the reaction at the pivot?
14. The figure below shows a uniform balanced by four forces at its centre. Determine the value of force \mathbf{F}.

15. A uniform wooden plank of length $\mathbf{5 0} \mathbf{m}$ is pivoted at its centre and balanced by a force of $\mathbf{1 5 0 N}$ at $\mathbf{1 5 m}$ mark and another force of $\mathbf{6 0 N}$ on the other side at a distance \mathbf{D} from the pivot.

Determine the distance \mathbf{D}
16. The diagram in figure represents a system in equilibrium.

Determine the force, \mathbf{F} needed to keep the system in equilibrium.
17. The figure below shows a uniform metal rod balanced at the centre by different forces.

18. A uniform meter ruler is suspended vertically form a pivot at the 0 cm mark and maintained vertically by three horizontal forces acting at the $\mathbf{1 0} \mathbf{c m ~} \mathbf{6 0} \mathbf{c m}$ and $\mathbf{8 0} \mathbf{c m}$ as shown below. Calculate the force F acting at the $\mathbf{8 0} \mathbf{c m}$ mark.
19. Figure below shows a unifor

If the system is in equilibrium, determine the weight \mathbf{W} shown in the diagram.
20. The figure below shows a uniform ruler balanced at the centre due to action of some forces as shown. \mathbf{A} is a magnet of weight $\mathbf{3 0 N}$ and \mathbf{B} is a permanent magnet fixed on to the bench.

21. The figure below shows a uniform light rod balanced due to action of two forces shows. G is a magnet of weight $\mathbf{3 N}$ and \mathbf{H} is a permanent magnet fixed on to the bench.

22. Figure shows a hydraulic press system using a lever of negligible mass on the side of a small piston pivoted at point \mathbf{P}. A force of $\mathbf{1 2 0 N}$ is applied at \mathbf{R}.

(i) Calculate the force \mathbf{F} exerted by small piston on the liquid.
(ii) Find the weight of the Bale supported by the large piston.
23. The figure below shows two equal and opposite forces acting on meter at the $\mathbf{1 5 c m}$ mark and $\mathbf{7 5 c m}$ marks respectively. If each of the forces has a magnitude of $\mathbf{8 0 N}$, calculate the moment on the meter rule about $\mathbf{3 5 c m}$ mark.

