FORM 4 MATHEMATICS APRIL HOLIDAY ASSIGNMENT - 2024

1. The equation of a carve is $Y = 3X^2 - 4X + 1$

- a. Find the gradient function of the curve and its value when X=2.
- b. The equation of the tangent at point (2,5)
- c. The angle which the tangent to the curve at point (2,5) makes with horizontal.
- d. The equation of the line through the point (2,5) which is perpendicular to the tangent in b.(i)

2. A particle move in a straight line such that its displacement S meters from a given point is $S=t^3 - 5t^2 + 3t + 4$ where t is the time in seconds. Find

- a. The velocity of the particle at t = 5
- b. The velocity of the particle at t = 5
- c. The value of t when the particle is momentarily at rest.
- D Acceleration of the particle when t = 2.

3. For a sample of 100 bulbs, the time taken for each bulb to burn was recorded. The table below shows the result of the measurements.

Time (hours)	Number of bulbs				
15 - 19	6				
20 - 24	10				
25 - 29	9				
30 - 34	5				
35 - 39	7				
<u> </u>	11				
45 - 49	15				
<u> </u>	13				
55 - 59	8				
60 - 64	7				
🧮 65 - 69	5				
<u> </u>	4				

a. Using an assumed mean of 42, calculate

i. The actual mean of distribution

- ii. The standard deviation of the distribution
- b. Calculate the quartile deviation

4. The heights of 100 maize plants were measured to the nearest centimeter and the results recorded in the shown below.

Height x(cm)	Frequency	d	D ²	fd	Fd ²	Cf
25 - 29	5			-15		5
30 - 34	12			-24		17
35 - 39	18	-1	1	-18		35
40 - 44	30	0	0	0		65
45 - 49	17	1	1			
50 - 54	11	2				
55 - 59	7	3				

a. Complete the table

b. Calculate to 2 d.p

i. The mean

ii. The standard deviation

c. Using the data above plot an orgive and use it to the quartile deviation.

5. a. Fill the table below

х	0	15	30	45	60	75	90	120	150	180
3Sinx - 1	-1		0.5		1.6		2			
Cos x	1		0.87	0.71	0.5		0	-0.5	-0.87	-1

- b. Using the same axis draw on the graph paper provided, the graph of Y = 3 sin x 1 and Y = Cos X for $O^{\circ} \le x \le 180^{\circ}$.
- c. Use your graph to solve the equation
 - i. $3\sin x \cos x = 1$ Download this and other FREE revision materials from https://teacher.co.ke/notes

d. State the amplitude of the curve $y = 3 \sin x - 1$

6. Complete the table below for the functions $Y = 3 \sin 3\Theta$ and $Y = 2 \cos (\Theta + 40^{\circ})$

θ	0 ⁰	10 ⁰	20 ⁰	30 ⁰	40 ⁰	50 ⁰	60 ⁰	70 ⁰	80 ⁰	90 ⁰
3Sin 3 O	0	1.50		3.00			0.00			-3.0
2Cos(O +40°)	1.53	1.29			0.35			-0.69		-1.29

a. On the grid provided, draw the graphs of Y = 3Sin 3 Θ and Y = 2Cos (Θ + 40°) on the same axes. Take 1cm to represent 5° on the x-axis and 4cm to represent 1 unit on the Y – AXIS.

b. From the graph find the roots of the equation

i.

 $\frac{3}{4}\sin 3\theta = \frac{1}{2}\cos(\theta + 40^{\circ})$ 2*Cos* ($\theta + 40^{\circ}$) = 0 in the range $0^{\circ} \le \theta \le 90^{\circ}$ ii.

7. A plane leaves an airport P at (10° S, 62° E) and flies due at north 800km/h

a. Find its position after 2 hrs.

b. The plane turns and flies at the same speed due west. It reaches Q longitude of 12° W.

i. Find the total distance it has travelled in nautical miles.

ii. Find the time it has taken (Take 1 nautical mile to be 1:853km)

c. If the local time at P was 1300hrs when it reached Q. Find the local time at Q when it landed at Q.

8. An aeroplane that moves at a constant speed of 600knots flies from town A (14°N, 30°W) southwards to town B (X°S, 30°W) taking 3½hrs. It then changes direction and flies along latitude to town C (X°S, O°E). Given π =3.142 and radius of the earth r = 6370km.

a. Calculate

i. The value of X

ii. The distance between town B and town C along the parallel of latitude in km.

b. D is an airport situated at (5°N, 180^oW), calculate:

i. The time the aeroplane would take to fly C to D following a great circle through the south pole.

ii. The local time at D when the local time A is 12.20p.m.

9. An aircraft leaves A (60°N, 13°W) at 1300 hours and arrives at B (60°N, 47°E) at1700 hrs.

a. Calculate the average speed of the aircraft in knots.

b. Town C (60°N, 133°) has a helipad. Two helicopters S and T leaves B at the same time. S moves due West to C while T moves due North to C. If the two helicopters are moving at 600 knots, find:

i. The time taken by S to reach C.

ii. The time taken by T to reach C.

C. The local time at a town D (23°N, 5°w) IS 1000 hours. What is the local time at B.

10. Complete the table giving your values correct to 2 d.p.

X 🗧	0 ⁰	15 ⁰	30 ⁰	45 ⁰	60 ⁰	75 ⁰	90 ⁰	105 ⁰	120 ⁰
3Cos X ^o	3.00		2.60		1.50		0	-0.78	
4Sin(2x-10°)		1.37		3.94	3.76		0.69		-3.06

b. Taking one cm to represent 15° on the x-axis and 2cm to represent 1 unit on the Y-axis, draw the graphs of Y=3Cos X° and $Y = 4Sin(2x-10^{\circ})$ on the same set of axis on the grid provided.

c. Use your graph to find values of x for which $3\cos x - 4\sin (2x-10^{\circ}) = 0$.

d. State:

i. The amplitude of the graph $Y = 3\cos x$.

ii. The period of the graph $Y = 4Sin (2x - 10^{\circ})$.

11. a. On the graph paper provided, draw the locus that satisfies the conditions.

 $X - y \ge 0$ $(x-2)^2 + (y-2)^2 \le 16$ X <5 Y 0

b. Name the locus of P

c. Find the approximate area of the region representing the locus of P.

d. P represents a flower garden in Juhudi High School. What distance does a student cover when he goes round it once?