FORM 2 MATHEMATICS
 APRIL HOLIDAY ASSIGNMENT - 2024

Instructions (Answer all the questions)

1. Solve for x in the equation.
(3mks)

$$
32^{(x-3)} \times 8^{(x+4)}=64 \div 2^{x}
$$

2. Determine the value of y in
(3mks)
$7^{(2 y-1)}=2401$
3. Solve for x and y
(4mks)

$$
\begin{aligned}
& 3^{2 x-y}=27 \\
& 4^{x} \div 16^{y}=1
\end{aligned}
$$

4. Use tables to evaluate:
a) $\frac{3}{0.6735}+\frac{13}{0.156}$
b) $\frac{142.7 \times 62.3}{22.83 \times 17.31}$
5. A cylindrical metal bar of height 12 cm and radius 3.5 cmis melted down and recast into a cubic block. Find the length of the side of the cube, giving your answer to one decimal place (3mks)
6. a) A line L_{1} passes through the point $(3,3)$ and $(5,7)$. Find the equation of L_{1} in the form $y=m x+c$, where m and c are constants. (3mks)
b) Another line L_{2} is perpendicular to L_{1} and passes through ($-2,3$). Find the equation of L_{2}
c) The x-intercept of L_{2}
d) Determine the point of intersection of L_{1} and L_{2} (3mks)
7. a) A straight line L_{1} whose equation is $3 y-2 x=-2$ meets the x-axis at R. Determine the coordinates of R (2mks).
b) A second line L_{2} is perpendicular to L_{1} at R. Find the equation of L_{2} in the form $y=m x+c$, where m and c are constants. (3mks)
c) A third line L_{3} passes through $(-4,1)$ and is parallel to L_{1}. Find:
I. the equation of L_{3} in the form $y=m x+c$, where m and c are constants. (2mks)
II. the co-ordinates of point S, at which L_{3} intersects L_{2}. (3mks)
8. (i) On a graph plot the points $\mathrm{A}(1,1), \mathrm{B}(2,2), \mathrm{C}(5,1)$ and $\mathrm{D}(4,0)$. Join the points with straight lines. (2mks)
(ii) On the same axes, locate and plot the points $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}$ the images of ABCD under an enlargement center at the origin and scale factor - $2(2 \mathrm{mks})$
(iii) Draw the quadrilateral $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ and state the co-ordinates of its vertices. (2 mks)
(iv) Locate and plot points $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime} \mathrm{D}^{\prime \prime}$ the images of ABCD under a rotation of $+90^{\circ}$ about the origin. Hence draw the quadrilateral $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime} \mathrm{D}^{\prime \prime}$ (3 mks)
(v) State the co-ordinates of $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime} \mathrm{D}^{\prime \prime}$ (1 mk)
9. A triangle whose vertices are $P 2,2), Q(4,2)$ and $R(4,4)$ is mapped onto a triangle whose vertices are $P^{\prime}(4,-2), Q^{\prime}(2,-2)$ and $R^{\prime}(2,-4)$ under a rotation. Find:
a) the centre and angle of rotation (3mks)
b) the images of points $(0,4)$ and $(-1,2)$ under the same rotation. (3 mks)
