FORM 2 MATHEMATICS APRIL HOLIDAY ASSIGNMENT - 2024

Instructions (Answer all the questions)

1. Solve for x in the equation. (3mks)

$$32^{(x-3)} \times 8^{(x+4)} = 64 \div 2^{x}$$

2. Determine the value of y in (3mks)
 $7^{(2y-1)} = 2401$
3. Solve for x and y (4mks)
 $3^{2x-y}=27$
 $4^{x} \div 16^{y}=1$
4. Use tables to evaluate: (6mks)
 $a) \frac{3}{0.6735} \div \frac{13}{0.156}$
b) $\frac{142.7 \times 62.3}{22.83 \times 17.31}$

5. A cylindrical metal bar of height 12cm and radius 3.5cmis melted down and recast into a cubic block. Find the length of the side of the cube, giving your answer to one decimal place (3mks)

6. a) A line L_1 passes through the point (3, 3) and (5, 7). Find the equation of L_1 in the form y=mx+c, where m and c are constants. (3mks)

b) Another line L_2 is perpendicular to L_1 and passes through (-2, 3). Find the equation of L_2 (3mks)

c) The x-intercept of L_2 (1mk)

d) Determine the point of intersection of L_1 and L_2 (3mks)

6. a) A straight line L_1 whose equation is 3y-2x=-2 meets the x-axis at R. Determine the coordinates of R (2mks). b) A second line L_2 is perpendicular to L_1 at R. Find the equation of L_2 in the form y=mx+c, where m and c are constants. (3mks)

c) A third line L_3 passes through (-4, 1) and is parallel to L_1 . Find:

I. the equation of L₃ in the form y=mx+c, where m and c are constants. (2mks)

II. the co-ordinates of point S, at which L_3 intersects L_2 . (3mks)

7. (i) On a graph plot the points A(1, 1), B(2, 2), C(5, 1)and D(4, 0). Join the points with straight lines. (2mks)

(ii) On the same axes, locate and plot the points A'B'C'D the images of ABCD under an enlargement center at the origin and scale factor -2 (2 mks)

(iii) Draw the quadrilateral A'B'C'D' and state the co-ordinates of its vertices. (2 mks)

(iv) Locate and plot points A''B''C''D'' the images of ABCD under a rotation of +90^o about the origin. Hence draw the quadrilateral A''B''C''D'' (3 mks)

(v) State the co-ordinates of A''B''C''D'' (1 mk)

8. A triangle whose vertices are P2, 2), Q (4, 2) and R (4, 4) is mapped onto a triangle whose vertices are P '(4,-2), Q '(2,-2) and R '(2,-4) under a rotation. Find:

a) the centre and angle of rotation (3mks)

b) the images of points (0, 4) and (-1, 2) under the same rotation. (3mks)