FORM 4 PHYSICS PAPER 1

MARKING SCHEME

SECTION A (25 MARKS)

1. The figure below shows a Vernier caliper scale.

Fig. 1

If the Vernier calipers used had a zero error of -0.02 what is the actual reading of the scale. (2 mks)

$$
\begin{array}{r}
8.20 \\
+\underline{0.03} \\
+\underline{0.23} \\
+\underline{0.25} \\
\hline
\end{array}
$$

2. Find the total pressure experienced by a diver 8 metres below the sea surface.

Take; Atmospheric pressure $=103$ 360N
Density of sea water $=1030 \mathrm{~kg} / \mathrm{m}^{3}$
Pressure experienced by diver $=$ Atmospheric pressure + Pressure due to sea water

$$
\begin{aligned}
& =103360+\rho \mathrm{gh} \\
& =103360+1030 \times 10 \times 8 \\
& =185760 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

3. The figure below shows an electric heater placed midway between flask A and B. flask A is shinny on the outside and flask B is blackened on the outside.

a) Name the process by which heat travels from heater to the flask. (1mk)

Radiation

b) State the observation that will be made.

4. The following is a graph of force against extension for a spring

On the same axes, sketch a graph of force against extension for a spring double the length, same thickness, same material as the spring above (1MK)

5. Water flows steadily along a horizontal pipe at a volume rate of $8.0 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$. if the area of cross section of the pipe is $20 \mathrm{~cm}^{2}$. Calculate the velocity of the fluid.

Flow rate $=$ area x speed

$$
\begin{aligned}
& 8.0 \times 100^{-3}=\frac{20}{100 \times 100} \times \mathrm{V} \\
& \mathrm{~V}=\frac{8.0 \times 10^{-3} \times 10^{4}}{20} \\
& =4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

6. Two parallel forces are acting on a body of mass 0.7 kg as shown in the figure below.

7. State pressure law.

Pressure of a fixed mass of a gas is directly proportional to its absolute temperature provided the volume is kept constant.
b) Air is compressed at a constant temperature until the its pressure rises from 82 cmHg to 140 cmHg . If the initial volume of air is $85 \mathrm{~cm}^{3}$, find the final volume of air.
(3mks)

$$
\begin{aligned}
\mathrm{P}_{1} \mathrm{~V}_{1} & =\mathrm{P}_{2} \mathrm{~V}_{2} \\
\mathrm{~V}_{2} & =\frac{P_{1} V_{1}}{P_{2}} \\
& =\frac{82 \times 85}{140} \\
& =49.786 \mathrm{~cm}^{3}
\end{aligned}
$$

8. Explain the cause of random motion of particles as observed in Brownian motion in a smoke cell experiment. (1mk)

Large particles are bombarded by the smaller invisible particles of the surrounding medium.
9. The figure below shows a machine being used to raise a load. Use the information given in the figure to answer questions below.

(a) Determine the velocity ratio (V.R) of the machine.
(1 mark)
Velocity Ratio V.R. $=6$
(b) If a load of 800 N is raised by applying an effort of 272 N , determine the efficiency of the machine.
M.A $=\frac{L}{E}=\frac{800}{272}=2.941$

Efficiency $=\frac{M \cdot A}{V \cdot R} \times 100$
$=\frac{2.941}{6} \times 100$
$=49.02 \%$
10. Figure below shows a liquid in a long cylindrical tube closed at one end with a cork. The cork is tight fitting but movable.

Fig 2

State and explain the observation that would be made when the tube is heated uniformly. (2mks)
The tube tilt in anticlockwise direction. The liquid moves towards left pushing the cork resulting to anticlockwise moment being greater than clockwise moment.

SECTION B (55 MARKS)

11. A) State Archimedes principle.

When a body is partially or totally immersed in a fluid, it experiences an upthrust equal to the weight of the fluid displaced.
b) Figure below shows an experiment used to determine the density of an irregular piece of metal. The mass of metal in air is 200 g .

i) Determine the volume of the stone in cubic metres.

$$
\begin{aligned}
\text { Volume }= & 62.4 \mathrm{~cm}^{3}-51.2 \mathrm{~cm}^{3} \\
& =11.2 \mathrm{~cm}^{3} \\
& =11.2 / 1000000=0.0000112 \mathrm{~m}^{3}
\end{aligned}
$$

ii) Calculate the density of the metal to 3 significant figure.

Density = Mass/Volume

$$
=200 / 11.2
$$

$=17.9 \mathrm{~g} / \mathrm{cm}^{3}$ or $17900 \mathrm{~b} 6 / \mathrm{mb}^{3} \mathrm{ad}$ this and other FREE revision materials from https://teacher.co.ke/notes
c) Given that the density of water is $1 \mathrm{~g} / \mathrm{cm}^{3}$, determine;
i) The mass of water displaced.

$$
\begin{aligned}
& \text { Mass }=\text { density } \times \text { volume } \\
& \quad=1 \times 17.9 \\
& =17.9 \mathrm{~g}
\end{aligned}
$$

ii) The upthrust acting on water.

Upthrust = weight of the displaced fluid.

$$
\begin{aligned}
& =17.9 / 1000 \times 10 \\
& =0.179 \mathrm{~N}
\end{aligned}
$$

iii) The relative density of the metal.

$$
\begin{aligned}
\text { R.D } & =\frac{\text { Density of substance }}{\text { Density of water }} \\
& =\frac{17.9 \mathrm{~g} / \mathrm{cm}^{3}}{1 \mathrm{~g} / \mathrm{cm}^{3}} \\
& =17.9
\end{aligned}
$$

d) A solid displaces 5.5 cm 3 of paraffin when floating and $20.5 \mathrm{~cm}^{3}$ when fully immersed. Given that the density of paraffin is $800 \mathrm{~kg} / \mathrm{m}^{3}$, determine the density of the solid.

Weight of solid = volume when floating x density of paraffin.

$$
\begin{aligned}
& =5.5 / 1000000 \times 800 \\
& =0.0044 \mathrm{~N} \\
& \text { Mass }=0.0044 \mathrm{~N} / 10 \times 1000 \\
& =4.4 \mathrm{~g} \\
& \text { density }=\frac{\text { mass }}{\text { volume }} \\
& =\frac{4.4}{20.5} \\
& =0.215 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

12. a) State one factor that affect the boiling point of a liquid.

Temperature
Pressure
b) 100 g of a liquid at a temperature of $10^{\circ} \mathrm{C}$ is poured into a well lagged calorimeter. An electric heater rated 50W is used to heat the liquid. The graph in Figure 8 below shows the variation of the temperature of the liquid with time.

ii) I) Determine the heat given out by the heater between the times $t=0.5$ minutes and

$$
\mathrm{t}=5.0 \quad \text { minutes. }
$$

$50 \times 60 \times 4.5=1350$ Joules

II) From the graph determine the temperature change between the times $t=0.5$ minutes
and $\mathrm{t}=5.0$ minutes.

$$
70-13=57^{0}
$$

III) Hence determine the specific heat capacity of the liquid.

$$
\begin{aligned}
& \mathrm{H}=\mathrm{mc} \boldsymbol{\theta} \\
& \begin{array}{l}
225 \times 60=100 / 1000 \times \mathrm{cx} 57 \\
\mathrm{C}=\frac{225 \times 1000 \times 60}{100 \times 57}=39.474 \times 60 \\
\quad \begin{array}{l}
\text { Download this and other FREE revision materials from https://teacher.co.ke/notes } \\
\quad=2368.44 \mathrm{~J} / \mathrm{Kgc}
\end{array}
\end{array}
\end{aligned}
$$

iii) 1.8 g of vapor was collected from the liquid between the times $\mathrm{t}=6.8$ minutes and $\mathrm{t}=7.3$
minutes. Determine the specific latent heat of vaporization of the liquid.
(4mks)

$$
\begin{aligned}
& \mathrm{pt}=\mathrm{mLv} \\
& 50 \times 0.5 \times 60=1.8 / 1000 \times \mathrm{Lv} \\
& \mathrm{Lv}=\frac{50 \times 0.5 \times 60 \times 1000}{1.8} \\
& =833333.33 \mathrm{~J} / \mathrm{Kg}
\end{aligned}
$$

13. a) Define angular velocity. (1mk)
Angular Velocity is the rate of change of angular displacement with time.
b) The diagram below shows an object of mass 2.0 kg whirled in a vertical circle of radius 0.8 m at a uniform speed of $50 \mathrm{~ms}^{-1}$.

Determine;

i) The centripetal force on the object.

$$
\mathrm{F}=\frac{m v^{2}}{r}
$$

$$
=\frac{2 \times 50^{2}}{0.8}
$$

$$
=\frac{2 \times 2500}{0.8}
$$

$$
=6250 \mathrm{~N}
$$

ii) The tension in the string when the object is at \mathbf{A}.
(2mks)

$$
\begin{aligned}
& \mathrm{T}=\frac{m v^{2}}{r}-\mathrm{mg} \\
& =6250-2 \times 10 \\
& =6250-20=6230 \\
& =6230
\end{aligned}
$$

iii) The tension in the string when the object is at \mathbf{B}.
$\mathrm{T}=\frac{m v^{2}}{r}+\mathrm{mg}$
$=6250+20=6270$
$=6270$
c) The speed of rotation is gradually increased until the string snaps. At what point is the string likely to snap? Explain.

At the bottom, point B.

Tension is the greatest.
14. a) State the principle of parallel forces.

Sum of upward forces is equal to the sum of downward forces.
b) A uniform plank of wood weighing 50 N and of length 5 m is suspended by two ropes A and B , 1.5 m a part A is 2 m from end and B is 1.5 m from the other end, as shown in fig. 1 below. A concrete block of weight 100 N is suspended from the center of the plank.

Calculate the tension, $\mathbf{T}_{\mathbf{A}}$ on the string \mathbf{A}
(3mks)

$\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}=100$
Taking movement about A
Clockwise moments $=100 \times 0.5=50$
Anticlockwise moments $=\mathrm{T}_{\mathrm{B}} \times 1.5$
At Equilibrium $\quad \mathrm{T}_{\mathrm{B}} \times 1.5=100 \times 0.5$
$\mathrm{T}_{\mathrm{B}} \times 1.5=50$
$\mathrm{T}_{\mathrm{B}}=50 / 1.5=33.33 \mathrm{~N}$
But $\quad \mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}=100$

$$
\begin{array}{r}
\mathrm{T}_{\mathrm{A}}+33.33=100 \\
\mathrm{~T}_{\mathrm{A}}=100-33.33 \\
=66.67 \mathrm{~N}
\end{array}
$$

c) I) state two ways in which the stability of a body can be increased.
(2mks)

- Broadening of the base.
- Lowering of the Centre of gravity.
II) State one way in which vehicle assembling companies enhances stability in vehicles.
(1mks)
- The heavy engine is placed as low as possible.
- Tires are fixed far apart for a wide base.
- Heavy chassis placed at the base.
- Light material used for the upper part of the vehicle.
- Luggage compartment placed at lower part of vehicle.

Download this and other FREE revision materials from https://teacher.co.ke/notes
15. The figure below shows a ball of mass 50 kg being thrown from a top of wall 20 m high with a horizontal velocity of $20 \mathrm{~m} / \mathrm{s}$. It stuck the piston A of hydraulic lift and no water splashed out. The other piston B had a weight of 25200 N placed on it. Assuming the tap was opened at the time the ball stuck the piston A .

Determine;
(i) The time taken by the ball to strike the surface of piston A .
$S=u t+1 / 2 q^{2} \quad$ but $u=0$
S $=1 / 2 \mathrm{qt}^{2}$
$20=1 / 2 \times 10 t^{2}$
$\mathrm{t}=2 \mathrm{sec}$
(ii) The distance from the foot of the wall to where it hit piston A .
$\mathrm{R}=\mathrm{Ut}$

$$
=20 \times 2=40 \mathrm{~m}
$$

(iii)The vertical velocity with which the ball struck piston A.
$\mathrm{V}=\mathrm{u}+\mathrm{gt}$ but $\mathrm{u}=0$
$\mathrm{V}=\mathrm{gt}=10 \times 2=20 \mathrm{~m} / \mathrm{s}$
(iv) The force with which the ball struck piston A.
$\mathrm{F}=\mathrm{ma}$
$\mathrm{a}=\frac{v-u}{t}=\frac{20-0}{2}=10 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{F}=50 \times 10$

$$
=500 \mathrm{~N}
$$

(v) The area of piston B if the load on the piston B did not move and that the two pistons were initially at the same level.

$$
\begin{aligned}
\frac{F 1}{A 1} & =\frac{F 2}{A 2} \\
A 2 & =\frac{A 1 \times F 2}{F 1} \\
& =\frac{50 \times 25200}{500} \\
& =2520 \mathrm{~cm}^{2}
\end{aligned}
$$

