TIME: 2 HOURS

FORM 3

MARKING SCHEME

INSTRUCTIONS.

$>$ Answer all the questions in the spaces provided.

1. Samples of urine from three participants F, G and H at an international sports meeting were spotted onto a chromatography paper alongside two from illegal drugs A1 and A2. A chromatogram was run using methanol. The figure below shows the chromatogram.

i. Identify the athlete who had used an illegal drug.

- \boldsymbol{G}
ii. Which drug is more soluble in methanol?
- A1

2. Using electrons in the outermost energy level, draw the dot(.) and cross (x) diagrams for the molecules $\mathrm{H}_{2} \mathrm{O}^{+}$and Naf. $(\mathrm{H}=1, \mathrm{Na}=11, \mathrm{~F}=9, \mathrm{O}=8)$
i. Hydroxonium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$.
ii. Sodium floride, Naf
3. The table below gives the first ionization energies of the alkali metals.

Element	$\mathbf{1}^{\text {st }}$ ionization energy Kj mol $^{\mathbf{- 1}}$
A	494
B	418
C	519

a) Define the term first ionization energy.
(1mk)

- This is the energy needed to remove the first electron completely from an atom in gaseous state.
b) Which of the three metals is the least reactive? Give a reason.
(2mks)
Download this and other FREE revision materials from https://teacher.co.ke/notes
- C; its outermost electron is strongly attracted to the nucleus hence not easily lost/ requires highest amount of energy to remove an electron during a reaction.

4. Element K (not actual symbol of element) has isotopes with relative abundance as show below.

Isotope	Abundance (\%)
${ }^{10} \mathrm{~K}$	18.69
5	81.31
${ }_{5}^{11} \mathrm{~K}$	

Calculate the relative atomic mass of element.
(2mks)

$$
R A M=\underline{18.69 \times 10+81.31 \times 11}
$$

100
$=10.813$
5. a) What is meant by the term?
i) Atom
(1mk)

- The smallest indivisible particle of an element that can take part in a chemical reaction.
ii) Isotope
- Are atoms of the same element with the same atomic number but different mass numbers.
b) The formula for a sulphate of titanium is $\mathrm{Ti}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. What is the formula of its chloride?
(1mk)
- TiCl_{3}

6. In an experiment to determine the relative formula mass of gas P ; the time taken for equal volumes of oxygen and gas P under identical conditions of temperature and pressure was measured and the results were shown on the table below. ($\mathrm{O}=16.0$)

Gas	Oxygen	\mathbf{P}
Time in seconds	20.3	30.3

$$
\begin{aligned}
& \frac{T 1}{T 2}=\sqrt{\frac{M_{1}}{M_{2}}} \\
& \frac{20.3}{30.3}=\sqrt{\frac{32}{M_{2}}} \\
& \binom{20.3}{30.3}^{2}=\frac{32}{M_{2}} \\
& M_{2}=\frac{32 \times 30.3^{2}}{20.3^{2}} \\
& M_{2}=71.92
\end{aligned}
$$

7. Calculate the number of chloride ions in a $250 \mathrm{~cm}^{3}$ of 1 M solution calcium chloride (Avagadro's number is 6.0×10^{23})
(3mks)
$\mathrm{CaCl}_{2}(\mathrm{aq}) \longrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{(}(\mathrm{aq})$
No. of moles of CaCl_{2}
```
\(250 \times 1\)
1000
\(=0.25 \mathrm{~mol}\)
No of moles of Cl ion \(=0.25 \times 2=0.5 \mathrm{~mol}\)
No of chloride ions \(0.5 \times 6.0 \times 10^{23}\)
\(=3.0 \times 10^{23}\) ions
```

8. The grid below represents part of the periodic table. Study it and answer the questions that follow. The letters are not the actual symbols.

a) Hydrogen can be placed in group I or group VII. Explain.

- Hydrogen reacts by losing one electron like group 1 elements to form H.
- Hydrogen can react to gain an electron like group 7 elements to form \boldsymbol{H}.
b) Write the formula of the compound formed between element T and Z .
(1mk)
- $\quad T Z^{2}$
c) How does the atomic radii of T and K compare. Explain.
(1mk)
- It is smaller than T; because K has more protons in the nucleus than T. there is therefore a grater pull in the K than T to the nucleus.

9. Identify and state the use of the apparatus represented below.

i. Name

- Pair of tongs
ii. Use
- Used for holding corrosive/hot solids.

10. A fixed mass of gas occupies $105 \mathrm{~cm}^{3}$ at $-14^{\circ} \mathrm{C}$ and 650 mmHg . At what temperature will it have a volume of $15 \mathrm{~cm}^{3}$ if pressure is adjusted to 690 ?
$\underline{P}_{1} V_{l}=\underline{P_{2} V_{2}} T_{2}=T_{1} \underline{P_{2} V_{2}}$
$\begin{array}{lll}T_{1} & T_{2} & P_{1} V_{1}\end{array}$
$T 2=259 k \times 690 \times 15$
650×105
$=39.28 \mathrm{~K}$
11. An oxide of copper in a porcelain boat was reduced was reduced by a stream of hydrogen. The results obtained were as follows;
Mass of porelain boat $=4.5 \mathrm{~g}$
Mass of boat + oxide $=6.4 \mathrm{~g}$
Mass of boat + copper $=6.02 \mathrm{~g}$
i. Deduce the empirical formula of the oxide.

Mass of copper $=(6.02-4.5) \mathrm{g}=1.52 \mathrm{~g}$
Mass of oxygen $=(6.40-4.5)-1.52=0.38 g$
Element $\mathrm{Cu} \quad \mathrm{O}$
$\begin{array}{lll}\text { Mass } & 1.52 \quad 0.38\end{array}$
$\begin{array}{lll}\text { Moles } & 1.52 & 0.38\end{array}$
$63.5 \quad 16$
0.02375
$0.02375=1 \quad E f=C u O$
12. a) State Gay-Lussac's law.
ii. If the relative formula of the oxide is 80 , determine its chemical formula. $(\mathrm{Cu}=64, \mathrm{O}=16)$
$n(C u O)=M F$
$n(80)=80$
$n=1$
chemical formula CuO

- Gases react in simple whole numbers ratios to one another and to the ratio of the products if gaseous.
b) When $100 \mathrm{~cm}^{3}$ of gaseous hydrocarbon ($\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$) burns in $300 \mathrm{~cm}^{3}$ of oxygen, $200 \mathrm{~cm}^{3}$ of carbon (IV) oxide and $200 \mathrm{~cm}^{3}$ of steam are formed. Deduce the formula of the hydrocarbon.

$C_{x} H_{y}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$		CO_{2}	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
100	300	200	200
1 vol	3 vol	2 vol	2vol

13. $30 \mathrm{~cm}^{3}$ of 0.5 M hydrochloric acid was used to neutralize $25 \mathrm{~cm}^{3}$ of sodium hydroxide solution. Determine the concentration of sodium hydroxide in grams per litre. (4mks)
$\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl} \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Moles of $\mathrm{HCl}=30 x 0.5 \div 1000=0.015$
Moles of $\mathrm{NaOH}=0.015($ rato $=1: 1)$
Concentration moles /litre
$=0.015 \times 1000 \div 25=0.6 \mathrm{M}$
Concentration grams/litres $=$ RFM x molarity
$=40 x 0.6=24 \mathrm{~g} / \mathrm{l}$
14. The following diagram represents a charcoal burner. Study it and answer the questions that follow.

Burning

Write the equations for the reaction at;
i. $\mathrm{A}-2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
ii. $\mathrm{B}-\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \longrightarrow \mathbf{C O}(\mathrm{g})$
iii. $\mathrm{C}-\mathrm{C}(\mathrm{s})+\mathrm{O} 2(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$
15. Use the scheme below to answer the questions that follow.

a) Identify the solids;
i. $\mathrm{H}-\mathrm{CaCO}_{3}$
(1mk)
ii. J-CaO
(1mk)
iii. Write a balanced equation to show thermal decomposition of H for formation of J .
(1mk)
$\mathrm{CaCO}_{3}(\mathrm{~s}) \xrightarrow{\text { heat }} \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ (heat must be shown for full mark)
b) State one laboratory use of $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$

- Used to detect the presence of carbon (IV) Oxide gas.

16. Explain why potassium is kept under paraffin while phosphorous is kept under water.

(2 mks)

- Potassium does not react with paraffin but react with water while phosphorous react with paraffin but does not react with water.

17. A fixed mass of an ideal gas occupies $200 \mathrm{~cm}^{3}$ at a pressure of 740 mmHg .
a) State Charle's law.

- It state that the volume of a fixed mass of a gas is directly proportional to the absolute temperature at constant pressure.
b) Calculate the volume of the gas at 77 mmHg pressure.
- $\quad P 1 V 1=P 2 V 2$
$740 \times 200=770 \times V_{2}$
770
$V_{2}=192.2 \mathrm{~cm}^{3}$

18. A mass of 2.5 g of acid HX was dissolved in water and the resulting solution was diluted to a total of

hydroxide. Calculate the relative molecular mass of acid.
```
\(\mathrm{HX}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \longrightarrow \mathrm{KX}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{l})\)
Moles ration 1:1
No of moles of \(\mathrm{KOH}=0.1 \times 25=0.0025 \mathrm{~mol}\)
    1000
```

Since mole ratio is 1:1
Number of moles in $15 \mathrm{~cm}^{3}$ of diluted Hx is 0.0025 mol
Molarity $=\underline{1000 \times 0.0025}$
15
If $2.5 g=250 \mathrm{~cm}^{3}$
? = 1000
$2.5 \times 1000 \div 250$
$=10 \mathrm{~g} / \mathrm{litre}$
Molarity $=\frac{g / l i t r e}{\text { R.M.M }}$
$=0.167$
$=10 \mathrm{~g} / \mathrm{l}$
R.M.M
$0.167 R M M=10 \mathrm{~g} / \mathrm{l}$
$R M M=10 \mathrm{~g} / \mathrm{l}$
$0.167=59.8$
$=60$
19. Name three sub-atomic particles found in an atom and state where they are found. (3mks)

Sub-atomic particle	Location
Protons	Nucleus
Electrons	Energy levels
Neutrons	Nucleus

20. The diagram below represent a set up that can be used to prepare and collect oxygen gas.

a) Write an equation for the reaction that takes place.
$2 \mathbf{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \xrightarrow{\mathrm{MnO}_{2}} \mathbf{2 H}_{2} \mathrm{O}(\mathbf{l})+\mathbf{O}_{2}(\mathrm{~g})$
b) What property of oxygen makes it possible for its collection as indicated in the diagram.

- It is slightly soluble in water.

21. The reaction below refers to the preparation of lead (II) sulphate starting with lead metal.

a) Name the type of reaction between solution X and sodium sulphate solution.

(1mk)

- Precipitation (double decomposition)
b) Write an ionic equation for the reaction in (a) above.
$-\mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{SO}^{2-}{ }_{4}(\mathrm{aq}) \longrightarrow \mathrm{PBSO}_{4}(\mathrm{~s})$
c) Explain why it is not possible to prepare residue Z using lead metal and dilute sulphuric acid.
(1mk)
- An insoluble coating of $\mathrm{PbSO}_{4}(\mathrm{~s})$ would prevent contact of the metal with the acid and stop the reaction almost immediately

22. Below are pH values of some solutions.

Solution	Z	Y	X	W
pH	6.5	13.5	2.2	7.2

a) Which solution is likely to be;
(2mks)
I. Acid rain

- Z
II. Potassium
- \boldsymbol{Y}
b) A basic substance V reacted with both solution Y and X . What is the nature of V .
(1mk)

- Amphoteric

23. Hydrogen gas was passed over hot copper (II) oxide in a combustion tube.
a) Write an equation for the reaction which took place.
$\mathrm{CUO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b) What observations were made in the combustion tube?
c) Name any other gas which could be used to reduce copper (II) oxide.

Ammonia
Carbon (II) oxide
24. a) Element why solid chloride does not conduct electricity while sodium chloride solution conducts.
(1mk)

- Solid sodium chloride does not contain free ions while sodium chloride solution contains free ions.

25. 'Dry ice' is preferred to ordinary ice as a refrigerant. Explain.

- Dry ice sublimes leaving no liquid unlike ordinary ice.

26. State one use of argon which is also a use of nitrogen gas.

- Filing electric bulb

27. The table below gives properties of four substances.

State with a reason which of the above is:-
i. An ionic compound.
(1mk)

- C, conduct in liquid state and not solid state.
ii. A metallic structure.
- A, conduct in both liquid and solid state with high M.P/B.P
iii. A giant atomic structure.
- D, has high M.P/B.P and does not conduct in both liquid and solid state.

