TERM 2-2023

PHYSICS - PRACTICAL

FORM FOUR (4)

MARKING SCHEME

QUESTION ONE

You are provided with the following apparatus:

- An ammeter (0-1 A)
- Voltmeter (0-3 V)
- Two dry cells
- Cell-holder
- Variable resistor $(0-100 \Omega)$
- Connecting wires
- Switch

Proceed as follows:

a) Connect the apparatus as shown in figure 1 below:

Figure 1
b) With the switch open, measure and record the voltmeter reading, V_{0}
$V_{0}=3.5 \mathrm{~V} \quad$; range: $\mp \mathbf{0 . 1}$
c) Now, remove the voltmeter and connect it across the variable resistor (as shown in figure 2).

Figure 2
d) Adjust the variable resistor until you obtain a reading of 1.0 V on the voltmeter. Record the corresponding ammeter reading. Continue to adjust the variable resistor to obtain the voltmeter readings shown in table 1 , each time recording the corresponding current value.

Table 1:

Voltage, V	1.0	1.5	2.0	2.5
Current, A Range: $\mp \mathbf{0} 01$	$\mathbf{0 . 4 0} ;$	$\mathbf{0 . 3 0} ;$	$\mathbf{0 . 2 0} ;$	$\mathbf{0 . 1 0} ;$
$R=\frac{V}{I}(\Omega)$	$\mathbf{2 . 5}$	$\mathbf{5}$	$\mathbf{1 0} \quad$	$\mathbf{2 5}$
$\frac{1}{I}\left(A^{-1}\right)$	$\mathbf{2 . 5}$	$\mathbf{3 . 3 3 3}$	$\mathbf{5}$	$\mathbf{1 0}$

e) complete the table 1 above:
(6 marks) notes:

- 2 dp a must for all values of current
- Resistance and $1 / \mathrm{I}$ must be to 4 SF or exact
- Award 1 mark for all values of R correctly done
- Award 1 mark for all values of $1 / I$ correctly done

f) Plot a graph of resistance, R against $\frac{1}{I}$

h) Given that: $\frac{V}{I}=\frac{P}{I}-K$, where P and K are constants. From the graph determine the values of P and K .
i. P

$$
\begin{aligned}
& P= \text { slope } ; \\
&=3.0 \mathrm{~V}
\end{aligned}
$$

ii. K

$$
\mathbf{K} \quad=\mathbf{Y} \text {-intercept; }
$$

$$
=10 \Omega
$$

i) State the significance of K

Internal resistance;

You are provided with the following apparatus:

- Complete retort stand
- Cork
- Optical pin (for suspending the cardboard)
- Stop-watch
- Half-metre rule
- Knife-edge
- Rectangular Cardboard (40 cm by 5 cm by 0.5 cm)

PROCEED AS FOLLOWS:

a) Using the knife-edge, determine the centre of gravity of the cardboard. Mark it as G.
b) From G, cut holes 1, 2, 3, 4, 5 and 6 at intervals of 3 cm . measure and record the distance, L of each of the holes from G .
c) Now set-up the apparatus as shown in figure 3, below:

stand

Figure 3
d) Displace the strip through a small angle, θ and release it to oscillate. Determine time, t for 10 oscillations and fill in your results in table 2 below:

Notes:
For all values of: $\mathrm{L}, \mathrm{T}, \mathrm{T}^{2}, \mathrm{~T}^{2} \mathrm{~L}$ and L^{2} - award 1 mark for each row correctly done Award $1 / 2$ mark for each correct value of time, t up to a maximum of 3

Table 2

hole	1	2	3	4	5	6

						-
Distance, L (cm)	3	6	9	12	15	18 conc
Time, \mathbf{t} for 10 oscillations (s)	14.16	10.65	9.85	9.75	10.01	10.20
Periodic time, T (s)	1.416	1.065	0.9850	0.9750	1.001	1.020
$\mathrm{T}^{\mathbf{2}}\left(\mathrm{s}^{2}\right)$	2.005	1.134	0.9702	0.9506	1.002	1.040
$\mathrm{T}^{\mathbf{2}} \mathrm{L}\left(\mathrm{ms}^{2}\right)$	0.06015	0.06804	0.08732	0.1141	0.1503	0.1872
$\mathbf{L}^{2}\left(\mathrm{~m}^{2}\right)$	0.0009	0.0036	0.0081	0.0144	0.0225	0.0324

e) Determine Z , given that: $Z=\frac{A}{B}$, where A , is the average value of $\mathrm{T}^{2} \mathrm{~L}$ and B is the average value of T^{2}
(2 marks)
$B=\frac{2.005+1.134+0.9702+0.9506+1.002+1.040}{6} ;=1.184 \mathrm{~s}^{2}$ ignore unit
$A=\frac{0.06015+0.06804+0.08732+0.1141+0.1503+0.1872}{6}=0.111185$

$$
=0.1112 \mathrm{~ms}^{2}
$$

Therefore, $Z=\frac{0.1112}{1.184}=0.09392 \mathrm{~m}$;
Notes:
Award $1 / 2$ mark for the principle of averaging (1 max) while ignoring units
Award 1 mark for correct evaluation while ignoring units

PART B

You are provided with the following apparatus:

- A thermometer (range: $-10^{\circ} \mathrm{c}-110^{\circ} \mathrm{c}$)
- A 250 ml beaker
- Measuring cylinder
- Retort stand, clamp and boss
- Stop watch
- Source of boiling water or Bunsen burner
- Some tissue paper

Proceed as follows:

f) Record the temperature reading, T_{0} of the thermometer provided

$$
\mathrm{T}_{0}=\mathbf{2 5}{ }^{0} \mathrm{C}
$$

g) State the significance of the temperature, T_{0} above.

Room temperature ;

h) Now pour 200 ml of hot (boiling) water from the source into the beaker and immediately insert the thermometer as shown in figure 1 below. Ensure it is at a temperature above $85^{\circ} \mathrm{C}$.

Figure 4
i) Start the stop watch when the temperature falls to $80^{\circ} \mathrm{c}$. Record the temperature of the water as it cools down after every two minutes for about ten minutes. Record your results in the table below:

Notes:

1 mark for each correct value up to a maximum of 5 marks

Table 3:

Time, \mathbf{t} (minutes)	0	2	4	6	8	10
Temperature, $\mathbf{T}\left({ }^{\mathbf{0}} \mathbf{C}\right)$ Range: $\bar{\mp} 5^{0} \mathrm{C}$	$\mathbf{8 0}$	$\mathbf{7 4}$	$\mathbf{6 9}$	$\mathbf{6 5}$	$\mathbf{6 2}$	$\mathbf{5 9}$

j) Given that the specific heat capacity of water is $4 \mathrm{~J} / \mathrm{g}^{0} \mathrm{C}$. determine the heat lost when the water cools from $80^{\circ} \mathrm{c}$ to the temperature in (a) above. (assume: $1 \mathrm{ml}=1 \mathrm{~g}$)
$\boldsymbol{Q}=\boldsymbol{m} \boldsymbol{c} \Delta \boldsymbol{\theta} \quad ;$
$Q=0.2 \times 4000 \times(80-25) \quad ;$
$=44000 \mathrm{~J}$;

THIS IS THE LAST PRINTED PAGE

