

# TERM 2 - 2023 PHYSICS - PRACTICAL FORM FOUR (4)



# **MARKING SCHEME**

# **QUESTION ONE**

You are provided with the following apparatus:

- An ammeter (0-1 A)
- Voltmeter (0-3 V)
- Two dry cells
- Cell-holder
- Variable resistor  $(0-100 \Omega)$
- Connecting wires
- Switch

# **Proceed as follows:**

a) Connect the apparatus as shown in figure 1 below:



# Figure 1

b) With the switch open, measure and record the voltmeter reading,  $V_0$ 

 $V_0 = 3.5V$ ; range:  $\pm 0.1$ 

(1 mark)

c) Now, remove the voltmeter and connect it across the variable resistor (as shown in figure 2).





d) Adjust the variable resistor until you obtain a reading of 1.0 V on the voltmeter. Record the corresponding ammeter reading. Continue to adjust the variable resistor to obtain the voltmeter readings shown in table 1, each time recording the corresponding current value.





# Table 1:

| Voltage, V                              | 1.0    | 1.5    | 2.0    | 2.5    |
|-----------------------------------------|--------|--------|--------|--------|
|                                         |        |        |        |        |
| Current, A                              | 0.40 ; | 0.30 ; | 0.20 ; | 0.10 ; |
| <b>Range: ∓0.01</b>                     |        |        |        |        |
| $R = \frac{V}{I} \left( \Omega \right)$ | 2.5    | 5      | 10     | 25     |
| $\frac{1}{I} (A^{-1})$                  | 2.5    | 3.333  | 5      | 10     |

- e) complete the table 1 above:
  - notes:

(6 marks)

- 2 dp a must for all values of current
- Resistance and 1/I must be to 4 SF or exact
- Award 1 mark for all values of R correctly done
- Award 1 mark for all values of 1/I correctly done



Teacher.co.ke

f) Plot a graph of resistance, R against  $\frac{1}{I}$ 

(5 marks)





- h) Given that:  $\frac{V}{I} = \frac{P}{I} K$ , where P and K are constants. From the graph determine the values of P and K. i.
  - Р (2 marks)

$$= 3.0 \mathrm{V};$$

(2 marks)

Teacher.co.ke



i) State the significance of K **Internal resistance**;







**QUESTION TWO** 

PART A



You are provided with the following apparatus:

- Complete retort stand
- Cork
- Optical pin (for suspending the cardboard)
- Stop-watch
- Half-metre rule
- Knife-edge
- Rectangular Cardboard (40cm by 5 cm by 0.5cm)

# **PROCEED AS FOLLOWS:**

- a) Using the knife-edge, determine the centre of gravity of the cardboard. Mark it as G.
- b) From G, cut holes 1, 2, 3, 4, 5 and 6 at intervals of 3 cm. measure and record the distance, L of each of the holes from G.
- c) Now set-up the apparatus as shown in figure 3, below:





d) Displace the strip through a small angle, θ and release it to oscillate. Determine time, t for 10 oscillations and fill in your results in table 2 below: (8 marks)

### Notes:

For all values of: L,T,  $T^2$ ,  $T^2L$  and  $L^2$ - award 1 mark for each row correctly done Award  $\frac{1}{2}$  mark for each correct value of time, t up to a maximum of 3

Table 2

|      |   | 2 | 2 |   | - | 6 |
|------|---|---|---|---|---|---|
| hole | 1 | 2 | 3 | 4 | 5 | 6 |





| Distance, L<br>(cm)                      | 3       | 6       | 9       | 12     | 15     | 18acher.c |
|------------------------------------------|---------|---------|---------|--------|--------|-----------|
| Time, t for<br>10<br>oscillations<br>(s) | 14.16   | 10.65   | 9.85    | 9.75   | 10.01  | 10.20     |
| Periodic<br>time, T (s)                  | 1.416   | 1.065   | 0.9850  | 0.9750 | 1.001  | 1.020     |
| $T^2(s^2)$                               | 2.005   | 1.134   | 0.9702  | 0.9506 | 1.002  | 1.040     |
| $T^{2}L (ms^{2})$                        | 0.06015 | 0.06804 | 0.08732 | 0.1141 | 0.1503 | 0.1872    |
| $L^2(m^2)$                               | 0.0009  | 0.0036  | 0.0081  | 0.0144 | 0.0225 | 0.0324    |

e) Determine Z, given that:  $Z = \frac{A}{B}$ , where A, is the average value of T<sup>2</sup>L and B is the average value of T<sup>2</sup> (2 marks)

$$B = \frac{2.005 + 1.134 + 0.9702 + 0.9506 + 1.002 + 1.040}{6}; = 1.184 \text{s}^2 \text{ ignore unit}$$
$$A = \frac{0.06015 + 0.06804 + 0.08732 + 0.1141 + 0.1503 + 0.1872}{6} = 0.111185$$
$$= 0.1112 \text{ms}^2$$

Therefore, 
$$Z = \frac{0.1112}{1.184} = 0.09392m$$
;

Notes:

Award ½ mark for the principle of averaging (1 max) while ignoring units Award 1 mark for correct evaluation while ignoring units

# PART B

You are provided with the following apparatus:

• A thermometer (range:  $-10^{\circ}c-110^{\circ}c$ )



- A 250 ml beaker
- Measuring cylinder
- Retort stand, clamp and boss
- Stop watch
- Source of boiling water or Bunsen burner
- Some tissue paper

# **Proceed as follows:**

f) Record the temperature reading,  $T_0$  of the thermometer provided

$$T_0 = 25^0 C$$
 ; (1 mark)

g) State the significance of the temperature,  $T_0$  above. (1 mark)

# Room temperature ;

h) Now pour 200ml of hot (boiling) water from the source into the beaker and immediately insert the thermometer as shown in figure 1 below. Ensure it is at a temperature above 85<sup>o</sup>C.





i) Start the stop watch when the temperature falls to 80<sup>o</sup>c. Record the temperature of the water as it cools down after every two minutes for about ten minutes. Record your results in the table below:

(5 marks)

Notes:





# 1 mark for each correct value up to a maximum of 5 marks



Table 3:

| Time, t (minutes)                | 0  | 2  | 4  | 6  | 8  | 10 |
|----------------------------------|----|----|----|----|----|----|
| Temperature, T ( <sup>0</sup> C) | 80 | 74 | 69 | 65 | 62 | 59 |
| Range: ∓5 <sup>0</sup> C         |    |    |    |    |    |    |

j) Given that the specific heat capacity of water is  $4J/g^0C$ . determine the heat lost when the water cools from  $80^0c$  to the temperature in (a) above. (assume: 1ml = 1g) (3 marks)

```
Q = mc \Delta \theta;

Q = 0.2 \times 4000 \times (80 - 25);

= 44000 J;
```



# THIS IS THE LAST PRINTED PAGE

Teacher.co.ke