TERM 2-2023

CHEMISTRY - PAPER 3 (233/3)
 FORM THREE (3)
 MARKING SCHEME

1. You are provided with:

- Solution $\mathbf{R}-$ a solution containing 15.75 g of $\mathrm{M}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}$ per litre.
- Solution \mathbf{Q} - a solution of sodium carbonate solution containing 1.325 g in $250 \mathrm{~cm}^{3}$.
- Solution J - a monobasic acid HA
- Methyl orange indicator.

You are required to:
a) Standardise solution \mathbf{J}.
b) Determine the relative atomic mass of element M in $\mathrm{M}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}$

Procedure 1

I. Fill the burette with solution J.
II. Pipette $25 \mathrm{~cm}^{3}$ of solution Q into a clean 250 ml conical flask and add 2 drops of methyl orange indicator.
III. Titrate solution Q with solution J and record your results in Table $\mathbf{1}$ below.
IV. Repeat the procedure and complete the table 1.

N/B: Retain the solution J in the burette for use in procedure II.

Table 1	I	II	II
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
The volume of solution $\mathrm{J}\left(\mathrm{cm}^{3}\right)$ used.			

Determine the:
(a) Average volume of solution J used.
(1 mark)

(b) Number of moles of solution Q in moles per litre. $(\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16)$

$$
\begin{gathered}
1.325 \mathrm{~g} \rightarrow 250 \mathrm{~cm}^{3} \rightarrow 1000 \mathrm{~cm}^{3} \\
? .4 \\
\frac{1000 \times 1.325}{2-50}=5.3 \mathrm{gll}
\end{gathered} \begin{aligned}
& \mathrm{L}=23+23+12+(16 \times 3) \\
&=106 \\
& \frac{5.3}{106}=0.05 \mathrm{M}
\end{aligned}
$$

(c) Number of moles of solution Q used.
(1 mark)

(1 mark)

(e) Number of moles of solution J used.

(f) The molarity of solution J.

$$
\begin{gathered}
\begin{array}{c}
\text { clarity of solution J. } \\
0.00 \text { and le } \longrightarrow \\
?
\end{array} \quad 20.8 \mathrm{~cm}^{3} \\
\frac{1000 \times 0.0025}{20.8}=0.12 \mathrm{M}
\end{gathered}
$$

Procedure 2

I. Using a $25 \mathrm{~cm}^{3}$ measuring cylinder, transfer $25 \mathrm{~cm}^{3}$ of solution R into a clean 250 ml conical flask.
II. Using a 100 ml measuring cylinder, transfer $75 \mathrm{~cm}^{3}$ of solution Q into the conical flask with solution R.
III. Boil the mixture for about 5 minutes. After cooling, filter the mixture into a conical flask and transfer the filtrate into a clean 100 ml measuring cylinder. Add distilled water to make exactly $100 \mathrm{~cm}^{3}$ of solution. Label this solution S.
IV. Pipette $25 \mathrm{~cm}^{3}$ of solution S into a clean conical flask and titrate with solution J from the burette using two drops of methyl orange indicator. Record your results in table 2 below.
V. Repeat procedure IV two more times and complete table 2.

Table 2

The volume of solution $\mathrm{J}\left(\mathrm{cm}^{3}\right)$ used.
(a) Calculate the average volume of solution J used.
(1 mark)

$$
13.895 \mathrm{~cm}^{3}
$$

(b) Determine the number of moles of:
i. Solution J in the average volume.

$$
0.12 \mathrm{~mole} \longrightarrow 1000 \mathrm{~cm}^{3}{ }^{\left(13 \mathrm{~m}^{3}\right.}
$$

ii. Sodium carbonate in $25 \mathrm{~cm}^{3}$ of solution S .
(1 mark)

$$
\frac{0.0016674}{2}=0.0008337 \text { moles. }
$$

iii. Sodium carbonate in $75 \mathrm{~cm}^{3}$ of solution S

$$
\begin{aligned}
& 0.0008337 \mathrm{mbles} \rightarrow 2 \mathrm{Scm}^{0} \rightarrow 7 \mathrm{~cm}^{3} \\
& \frac{0.0008337 \times 75}{25}=0.002501 \mathrm{moles}
\end{aligned}
$$

iv. Sodium carbonate in the original $75 \mathrm{~cm}^{3}$ of solution Q .

$$
\begin{aligned}
& 0.05 \text { moles } \rightarrow 1000 \mathrm{~cm}^{3} \\
& ? \rightarrow 7 \mathrm{~cm}^{3} \\
& \frac{75 \times 0.05}{100}=0.00375 \mathrm{moles}
\end{aligned}
$$

v. Sodium carbonate that reacted with solution R.

$$
0.00375-0.002501=0.001249 \text { moles }
$$

vi. $\mathrm{M}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}$ in $25 \mathrm{~cm}^{3}$ of solution R .
(1 mole of $\mathrm{M}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}$ reacts with 1 mole of sodium carbonate.)

$$
0.001249 \text { moles }
$$

(c) Determine:
i. Concentration of solution R in moles per litre.

$$
\begin{aligned}
& \begin{array}{l}
\text { tration of solution R in moles per litre. } \\
0 \cdot 001249 \mathrm{Sm}^{3} \\
? \\
\frac{1000 \times 0.001249}{\rightarrow}=1000 \\
25
\end{array}=0.04996
\end{aligned}
$$

ii. Relative formula mass of $\mathrm{M}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$.
(1 mark)

$$
\frac{15.75}{0.04996}=315.3
$$

iii. The relative atomic mass of M . $(\mathrm{O}=16, \mathrm{H}=1)$
(1 mark)

$$
M+(16+1) \times 2+18 \times 8=315 \cdot 3
$$

$$
M+(16+1) \times 2+18 \times 8-178=315.3 * \text { Give allowance of }
$$

$$
M=137.3
$$

2. You are provided with solid G. Carry out the following tests and write your observations and inferences in the spaces provided.
(a) Place all solid G in a boiling tube. Add $10 \mathrm{~cm}^{3}$ of distilled water and shake. Divide the resulting solution into four equal portions.

Observations	Inferences
Solid dissolves to form a colourless solution.	Solid is soluble $\mathrm{Cu}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ absent (1 mark)

(b) To the first portion, add 2M sodium hydroxide solution dropwise until in excess.

Observations	Inferences	
No white precipitate		 $\mathbf{Z n}^{2+}, \mathbf{P b}^{2+}, \mathbf{A l}^{3+} \mathbf{M g}^{2+}, \mathrm{Ca}^{2+}$ absent $(1$ mark $)$

(c) To the second portion, dip a clean glass rod in the solution and burn it directly in a nonluminous flame.

Observations	Inferences		
The solution burns with a yellow flame	Na^{+}present		
$(1$ mark $)$			$(1 \mathrm{mark})$

(d) To the third portion, add three drops of barium nitrate solution.

Observations		Inferences	
A white precipitate is formed.		$\mathrm{SO}_{4}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{CO}_{3}{ }^{2-}$ present	
	$(1 \mathrm{mark})$		$(1 \mathrm{mark})$

(e) To the mixture in (d) above, add $3 \mathrm{~cm}^{3}$ of 2 M nitric (V) acid and shake.

Observations		Inferences	
White precipitate dissolves.	$\mathrm{SO}_{3}{ }^{2-}, \mathrm{CO}_{3}{ }^{2-}$ present		
	$(1 \mathrm{mark})$		$(1 \mathrm{mark})$

3. You are provided with solid \mathbf{F}.

Carry out the tests below and write your observations and inferences in the spaces provided a. Place about half of solid F in a metallic spatula and burn it in a non-luminous flame.

Observations	Inferences
Solid burns with a yellow sooty flame	$(1 \mathrm{mark})$

b. Place the remaining solid F in a boiling tube, add about $6 \mathrm{~cm}^{3}$ of distilled water, and shake the boiling tube. Divide the solution into two portions of $2 \mathrm{~cm}^{3}$ each. To the first portion, add 2 drops of bromine water.

Observations	Inferences
Yellow bromine water changes to colourless.	,$C=C^{\prime}-C \equiv C-$
$(1 \mathrm{mark})$	presen $(1$ mark $)$

c. To the second portion, Test for the pH using universal indicator.

Observations	Inferences
$\mathbf{p H}$ is 3	Strongly acidic
$(1 \mathrm{mark})$	$(1 \mathrm{mark})$

This is the last printed page

