

TERM 2 - 2023

CHEMISTRY – PAPER 3 (233/3)

FORM THREE (3)

MARKING SCHEME

- 1. You are provided with:
 - **Solution R** a solution containing 15.75g of M(OH)₂.8H₂O per litre. •
 - **Solution** \mathbf{Q} a solution of sodium carbonate solution containing 1.325 g in 250 cm³. •
 - Solution J a monobasic acid HA •
 - Methyl orange indicator. •

You are required to:

- a) Standardise solution J.
- b) Determine the relative atomic mass of element M in M(OH)₂.8H₂O

Procedure 1

- Fill the burette with solution J. I.
- Pipette 25cm³ of solution Q into a clean 250ml conical flask and add 2 drops of methyl orange II. indicator.
- Titrate solution Q with solution J and record your results in Table 1 below. III.
- IV. Repeat the procedure and complete the table 1.

N/B: Retain the solution J in the burette for use in procedure II.

			(4 marks) CT-(
Table 1	Ι	II	II	NP-1
Final burette reading (cm ³)				AC-1
Initial burette reading (cm ³)				PA-1
The volume of solution J (cm ³) used.				FA-L
Determine the:				

(a) Average volume of solution J used.

20.8cm3

Number of moles of solution Q in moles per litre. (Na = 23, C = 12, O = 16) (b)

(1 mark)

(1 mark)

$$\begin{bmatrix} 1 \cdot 3259 = 250 \text{ cm}^{3} \\ 1 = 10000 \text{ cm}^{3} \\ 1 = 106 \\ 1$$

Procedure 2

- I. Using a 25cm³ measuring cylinder, transfer 25cm³ of solution R into a clean 250 ml conical flask.
- II. Using a 100ml measuring cylinder, transfer 75cm³ of solution Q into the conical flask with solution R.
- III. Boil the mixture for about 5 minutes. After cooling, filter the mixture into a conical flask and transfer the filtrate into a clean 100 ml measuring cylinder. Add distilled water to make exactly 100cm³ of solution. Label this solution S.
- IV. Pipette 25cm³ of solution S into a clean conical flask and titrate with solution J from the burette using two drops of methyl orange indicator. Record your results in table 2 below.
- V. Repeat procedure IV two more times and complete **table 2**.

Table 2

Download this and other FREE materials from https://teacher.co.ke/notes

Table 2	Ι	II	II	
Final burette reading (cm ³)				DP = 1
Initial burette reading (cm ³)				AC = 1
				PA=1

² FA = 1

(1 mole of M(OH)₂.8H₂O reacts with 1 mole of sodium carbonate.)

 $M(OH)_2.8H_2O$ in 25cm³ of solution R.

vi.

(1 mark)

Download this and other FREE materials from https://teacher.co.ke/notes

0.001249 moles

(C) Determine:

i. Concentration of solution R in moles per litre.

$$0 \cdot 001249 \text{ moles} = 25 \text{ cm}$$

$$1000 \times 0.001249 = 0.04996$$
ii. Relative formula mass of M(OH)₂.8H₂O.

$$15 \cdot 75$$

$$0 \cdot 04996 = 315 \cdot 3$$
iii. The relative atomic mass of M. (O = 16, H = 1) (1 mark)

$$M + (16 + 1) \times 2 + 18 \times 8 = 315 \cdot 3$$

$$M + (178 = 315 \cdot 3 + 6 \text{ ive allowance of } \pm 10$$

$$M = 137 \cdot 3$$

- 2. You are provided with solid G. Carry out the following tests and write your observations and inferences in the spaces provided.
- (a) Place all solid G in a boiling tube. Add 10 cm³ of distilled water and shake. Divide the resulting solution into four equal portions.

Observatio	ons	Inferences
Solid dissolves to form a c	colourless	Solid is soluble
solution.	(1 mark)	Cu ²⁺ , Fe ²⁺ , Fe ³⁺ absent (1 mark)

(b) To the first portion, add 2M sodium hydroxide solution dropwise until in excess.

Observations	Inferences
No white precipitate	Zn ²⁺ , Pb ²⁺ , Al ³⁺ Mg ²⁺ , Ca ²⁺ absent
(1 mark)	(1 mark)

(c) To the second portion, dip a clean glass rod in the solution and burn it directly in a nonluminous flame.

Observations	Inferences
The solution burns with a yellow flame	Na ⁺ present
(1 mark)	(1 mark)

(d) To the third portion, add three drops of barium nitrate solution.

Observations		Inferences	
A white precipitate is formed.		SO4 ²⁻ , SO3 ²⁻ , CO3 ²⁻ present	
	(1 mark)		(1 mark)

(e) To the mixture in (d) above, add 3 cm³ of 2M nitric (V) acid and shake.

Observations	Inferences
White precipitate dissolves.	SO3 ²⁻ , CO3 ²⁻ present
(1 mark)	(1 mark)

3. You are provided with solid F.

Carry out the tests below and write your observations and inferences in the spaces provided *a*. Place about half of solid F in a metallic spatula and burn it in a non-luminous flame.

Observations	Inferences
Solid burns with a yellow sooty flame	C=C − C=C-
(1 mark)	(1 mark)

b. Place the remaining solid F in a boiling tube, add about 6 cm³ of distilled water, and shake the boiling tube. Divide the solution into two portions of 2 cm³ each. To the first portion, add 2 drops of bromine water.

Observations	Inferences
Yellow bromine water changes to colourless.	C = C = C = C = C
(1 mark)	present (1 mark)

c. To the second portion, Test for the pH using universal indicator.

Observations	Inferences
pH is 3	Strongly acidic
(1 mark)	(1 mark)

This is the last printed page

