

# PHYSICS FORM 2

# **OPENER EXAM TERM 2 2023**

## MARKING SCHEME

### **INSTRUCTIONS TO CANDIDATES:**

- (a) Write your **Name** and **Adm** .**Number** in the spaces provided **above**.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) This paper consists of **two** Sections; **A** and **B**.
- (d) Answer ALL the questions in Sections A and B in the spaces provided.
- (e) All workings must be clearly shown.

| FOR EARWINER 5 USE ONLT. |          |         |             |  |  |
|--------------------------|----------|---------|-------------|--|--|
| Section                  | Question | Maximum | Candidate's |  |  |
|                          |          | Score   | Score       |  |  |
| Α                        | 1-11     | 25      |             |  |  |
|                          | 12       | 09      |             |  |  |
|                          | 13       | 11      | 0. Ke       |  |  |
| В                        | 14       | 11      |             |  |  |
|                          | 15       | 10      |             |  |  |
|                          | 16       | 13      |             |  |  |
| Total Score              |          | 80      |             |  |  |

#### FOR EXAMINER'S USE ONLY:

## **SECTION A (25 MARKS)**

1. Write down the vernier calliper's reading shown in figure1 below:



Figure 1

 $6.0 + 0.03 = 6.03 \text{ cm.} \checkmark 1$ 

2. Figure 2 below represents a simple gas thermometer set-up by a student.



## Figure 2

(a) State any one adjustment to increase the sensitivity of the apparatus. (1 mark)

Using a narrower glass tube.  $\checkmark 1 \cdot$  Using a bigger test-tube.  $\checkmark 1$  (Any one)

(b) State one advantage of gas thermometer over mercury in glass thermometer. (1 mark)

Gas thermometer will detect a small change in temperature unlike the mercury thermometer.  $\checkmark 1$ 

3. The pressure at the top of a mountain is found to be 700 mmHg. Calculate the height of the mountain given that the density of mercury is 13 600 kg/ $m^3$ , density of air 1.25kg/ $m^3$  and the pressure at sea level is 760 mmHg. (3 marks)

Pressure difference =  $(760 - 700)mmHg = 60 mmHg \checkmark 1$ 

$$h \times 1.25 \times 10 = \frac{60}{1000} \times 13\,600 \times 10\sqrt{1}$$
$$h = \frac{0.06 \times 13600}{1.25} h = 652.8 \, m\sqrt{1}$$

4. Figure 3 below shows a paint brush dipped in a clear paint and when removed from the

paint



Explain the shape of the bristles.

(2 marks)

*Inside: Molecules of the paint attract the bristles evenly all round, hence spread apart.*  $\checkmark 1$ 

*Outside: Surface tension of the paint draws the bristles together*  $\sqrt{1}$ 

- 5. State two factors that determine pressure in a liquid at a particular place. (2 marks)
- Density. ✓1 height /depth. ✓1
- 6. Two metals X and Y welded together are heated so that they break the contact shown at P in the figure 4.



## Figure 4

Explain how the contact is broken.

(2 marks)

Metal X expands more than Y,  $\checkmark 1$  causing the strip to bend downwards thus breaking contact. $\checkmark 1$ 

7. Explain how a positively charged electroscope can be used to determine the charge on charged rod. (2 marks)

Increase in leaf divergence implies a positively-charged rod.  $\checkmark 1$  Decrease of leaf divergence implies a negatively charged rod.  $\checkmark 1$ 

- 8. State two advantages of the lead-acid accumulator over the dry cell. (2 marks)
  *Draws larger current*. √1 *Lower internal resistance*. √1
- 9. A soft iron rod and a steel bar are placed in turns in a solenoid connected as in figure 5 below.



- (i) Show the polarity of end B of the coil when the switch is closed. (1 mark)  $End B is a north pole \sqrt{1}$
- (ii) Describe what happens to the two rods when current is switched on for some time, then turned off. (2 marks)
   The steel bar becomes a magnet when current is on and also when current is switched off. √1
   The soft iron core becomes a magnet when current is on but loses it when current is switched.√1
- 10. (a) State the effect on the image formed by a pinhole camera if:
  - (i) The size of the pinhole is increased. (1 mark)

When the size of the hole is increased, a brighter but blurred image is formed.  $\checkmark 1$ 

(ii) The object is moved closer to the pinhole. (1 mark)

If the camera is moved closer to the object, a bigger image is formed.

If the camera is moved closer to the object, a bigger image is formed.  $\checkmark 1$ 

(iii) The screen is moved farther from the pinhole (1 mark)

If the screen is moved farther, a bigger image is formed.  $\checkmark 1$ 

11. Describe experiments to determine the density of a liquid. (3 marks)

To find the density of a liquid:

- Determine the mass m1 of a clean beaker.
- Pour the liquid into a measuring cylinder and note the volume V.
- Determine the mass m2 of the beaker and water.  $\checkmark 1$

*Mass of liquid* =  $m2 - m1 \sqrt{1}$ 

Density of liquid =  $\frac{m2 - m1}{V} \sqrt{l}$ 

#### SECTION B (55 MARKS)

#### Answer ALL the questions in this section in the spaces provided

12. The diagram below shows two steel pins held at the poles of two magnets.



Figure 6

(a) State the polarity at:



(c) The figure 7 below shows a U-shaped magnet with a plotting compass placed between its poles. The arrow at the compass represents its north pole.



Figure 7

(i) State the polarities at A and B.  $A - South, B - North \checkmark 1$  (1 mark)

(ii) Draw on the diagram to indicate the magnetic field pattern around the Ushaped magnet. (1 mark)



✓ 1 check for correct direction of arrows and none should

cross/ intersect.

(d) The graph below shows the variation of magnetic strength against magnetizing current.



Figure 8

your answer. (2 marks)





13. (a) The figure 9 below shows a dry cell



| (i) N  |        | Name the parts labelled A, B and C.                                            | (3 marks)     |  |  |
|--------|--------|--------------------------------------------------------------------------------|---------------|--|--|
|        |        | A – Manganese (IV) Oxide. 🗸                                                    |               |  |  |
|        |        | $B-Ammonium$ chloride. $\checkmark$                                            |               |  |  |
|        |        | $C-Carbon rod \checkmark$                                                      |               |  |  |
| (ii) : |        | Explain the purpose of parts A, C and D in the cell.                           | (3 marks)     |  |  |
|        |        | A – Depolarizer. 🗸                                                             |               |  |  |
|        |        | $C-Positive terminal. \checkmark$                                              |               |  |  |
|        |        | D–Acts as a container as well as negative terminal. 🗸                          |               |  |  |
|        |        |                                                                                |               |  |  |
|        | (iii)  | State the polarity of end marked D.                                            | (1 mark)      |  |  |
|        |        | Negative terminal.                                                             |               |  |  |
|        | (iv)   | iv) Explain why the terminal voltage of the cell is likely to be less than its |               |  |  |
|        |        | when in use.                                                                   | (1 mark)      |  |  |
|        |        | Because of internal resistance. 🗸                                              |               |  |  |
| (c)    | (i) le | ad-acid cell is rated 50 Ah and supplies a steady current of 2 A. V            | What does the |  |  |
|        | term   | 50 Ah' mean?                                                                   | (3 marks)     |  |  |
|        | сара   | city = current in amperes × time in hours ✓                                    |               |  |  |
|        | 50 AI  | $H = 2A \times time$                                                           |               |  |  |
|        | time   | $= 50 AH \div 2A = 25 hours$                                                   |               |  |  |
|        | The b  | attery will supply current of 2A for 25 hours. 🗸                               |               |  |  |

14. The figure 10 below shows a hydraulic brake system for a car. The area of the master piston A is  $0.75cm^2$  while the slave pistons attached to the tyres P, Q, R and S are of area  $3cm^2$  each. A force of 500 N is applied on the master cylinder.



(a) Define pressure and give its SI units. (2 marks) Pressure is the force normally acting per unit area.  $\checkmark$ The SI unit is  $N/m^2$  /Pascals.  $\checkmark$ (b) (i) State the principle of transmission of pressure in liquids. (1 mark) Pressure applied to an enclosed liquid is transmitted equally to every part of the liquid. 🗸 (iii) State two important properties of the fluid used in the system. (2 marks) Non-compressibility ✓ • Non-viscous 🗸 • Non-corrossiveness (Any two) (iv) Explain why the slave cylinders are of the same size. (1 mark) For equal distribution of braking force. (c) Calculate: (i) The pressure generated in the master cylinder. (2 marks)  $P = \frac{F}{A} = \frac{500}{0.75 \times 10^{-4}}$  $= 6.667 \times 10^6 N/m^2 \checkmark$ Braking force on each tyre. (3 marks) (iii)

= 
$$(6.667 \times 10^6) \times (3 \times 10^{-4}) \checkmark$$
  
= 2.001 × 10<sup>3</sup>N ✓

*Force* =  $P \times A \checkmark$ 

15. The motion of smoke particles enclosed in a smoke cell can be studied using the set-up shown below



Figure 11

(a) What observation is made in the smoke cell? (2 marks)
 *The bright specks* ✓ *are observed moving randomly in the smoke cell*. ✓

(b) (i) Explain what happens in the smoke cell. (2 marks)

The bright specks are the smoke particles which scatter / reflect light shining on them.  $\checkmark$ 

They move randomly due to continuous collision with invisible air particles which are in continuous random motion.  $\checkmark$ 

(ii) What is the purpose of the microscope? (1 mark) *To magnify the bright specks.* 

(a) State two factors that affect the motion of the particles in the smoke cell.

(2 marks)

*Temperature of the environment. Density of the particles.*

(b) The diagram shows different states of matter:



Figure 12

- (i) Name the processes labelled a and c. (2 marks) a - Condensation,  $\checkmark$ c - Sublimation
- (ii) Explain why solids have a definite shape but liquids take the shape of the container in which they are put. (2 marks)

Solids have a stronger force of attraction between the particles than liquids  $\checkmark$  hence the intermolecular distance in solids is smaller than that of liquids.  $\checkmark$ 

16. The figure 13 below shows a liquid in a container



Figure 13

(a)Explain what happens to the stability of glass when more liquid is added. (2 marks)

*The stability reduces √because of the rise in the point of centre of gravity.* ✓

(b) If the glass is empty, what is its state of equilibrium?

- Unstable ✓

(c) A cylindrical block of metal with a curved section is placed to rest in two different positions as shown in the following figure 14.



#### Figure 14

State and explain which of the positions is more stable.

(2 marks)

(1 mark)

## Position $P \checkmark$ because of low $COG \checkmark$

(d) A non- uniform meter rule weighing 0.9 N is balanced horizontally on a sharp pivot placed at the 40 cm mark, when a load of 1.26 N is placed at the 32 cm mark. Determine the position of the center of gravity of the meter rule. (3 marks)



At equilibrium, Clockwise moment = Anticlockwise moment  $\checkmark$ 

$$0.9 \times d = 1.26 \times 8$$
  
 $d = 1.26 \times 8 \ 0.9 = 11.2 \checkmark$ 

Centre of gravity should be at, 40 + 11.2 = 51.2 cm  $\checkmark$ 

(e) Suppose the student was given a flat irregularly-shaped object shown in figure 15, how would the center of gravity be determined?( 3 marks)



Figure 15

Make three holes A, B, and C on the irregular object and suspend it from each of the holes as shown below.  $\checkmark$ 



With the help of a plumbline, draw the vertical line through the hole.  $\checkmark$ 

Repeat with the other two holes.

The intersection of the lines is the centre of gravity.  $\checkmark$ 

f) What modifications are introduced to the buses to ensure stability?

The upper parts of the buses are made of lighter materials,  $\checkmark$ 

While the engine, heavy chassis and luggage compartments on the lower part are heavy to ensure low centre of gravity.  $\checkmark$ 

# END#

