232/2 PHYSICS PAPER 2 (THEORY) MARKING SCHEME

1.	SECTION A	
	A lumious source of light emits light while a non-lumious source reflects light \checkmark	
		1mk
2.	Electrons are repelled from the cap and flow to the leaf and plate. \checkmark Repulsion between the electrons on the plate and those on the leaf sources the leaf to rice \checkmark	
	the electrons on the plate and those on the leaf causes the leaf to fise.	2mks
3.	13/	211110
	$f = \frac{Number of waves}{1} \checkmark = \frac{1/4}{2} = 50H_3 \checkmark$	
	$Time taken \qquad 35 \times 10^{-5}$	
	Alt.	21
	$f = \frac{1}{T} = \frac{1}{(25 - 5) - 10^{-3}} = 50 \text{H}_3 \checkmark$	2mks
	$I = (25-5) \times 10^{-5}$	
4.	Width of the aperture/ slit should be approximately or nearly equal to λ of the incident wave;	
		2mks
5.	0.9-0.4 1	211110
	Slope = $\frac{1}{3-7}$ \checkmark = $-\frac{1}{f}$ \checkmark	
	0.5	
	$=-\frac{0.0}{5}=0.125$	3mks
	$f = 8 cm \checkmark$	
6.	V^{2} (V^{2} 240 ²	
	$P = \frac{1}{R}$ $R = \frac{1}{P} = \frac{1}{2500}$	a 1
	$= 23.04 \Omega \checkmark$	2mks
7.		
	▼I√	
		1mk
0		
8.	Repuision only occurs between like poles of magnets while attract also occur between a magnet and a magnetic material	1mk
		THIK

9.		
	\times $ -$	
		er.co
	$ \sqrt{r}$	
		11.
		ттк
	air /	
10.	Hydrogen gas bubbles form around the positive plate. \checkmark The hydrogen gas insulates the	
	positive plate thus increasing internal resistance \checkmark	2mks
11	Electrons are attracted towards the rod leaving the atoms at the other end of the ball	2mks
11.	with net nositive charges	21110
	Trees absorb sound	1mks
12	In conductor the resistance increases with increase \checkmark in temperature while in a	THIKS
12.	amiconductor the registence reduces with increase in temperature	1mlz
12	Semiconductor the resistance reduces with increase in temperature.	THIK
13.	$\mathbf{E} = \mathbf{I}\mathbf{F} + \mathbf{I}\mathbf{R} \mathbf{v}$	0 1
	$= 2 \times 0.5 + 2 \times 10$	2mks
	$= 11 \vee \checkmark$	
	SECTION B	
14.	(a) (i) The ratio of the sine of angle of incidence to the sine of angle of refraction is a	
	constant for a pair of media	1mk
	(ii) – Do not absorb light energy like mirrors	
	- Not affected by thickness as mirrors	2mks
	- Do not wear off like the peeling of siyvering on mirror.	
	(b) (i) $k^n w = k^n a a^n w$	3mks
	= <u>1</u> x 1.33 = 0.9236	
	1.44	
	(ii) $i = 70^{\circ}$	
	Sini = 0.9236	
	Sinr	
	$\sin r = \sin 70^{\circ} = 1.0174$	3mks
	0.9236	
	r is greater than 90^0 hence the light reflection	
	(iii) The different colours travel at different velocities hence would have different	
	angles of refraction and are dispersed	1mba
	(iv) The eve would see a spectrum since the light rave are dispersed in the kerosene	2mks
	layer and are internally reflected at the kerosene – water surface the evel would see a	2111K5
	spectrum at the surface	
15	(a) Current flowing through a conductor is directly proportional to the potential	1mb
13.	(a) Current nowing unough a conductor is directly proportional to the potential difference across it provided the temperature and other physical conditions are best	1111K
	enterence across it provided the temperature and other physical conditions are kept	
	(b) (i) The work does in driving charges through the solution has to its and t	2mlrs
	(b) (i) The work done in driving charges through the coll is high due to its resistance.	ZIIIKS
	This energy is converted into neat in the coll (1) $V_{\rm eff}$ $V_{\rm eff}$ $V_{\rm eff}$ $V_{\rm eff}$	
	$(11) V = IR R = \underline{V} \checkmark = \underline{12V} \checkmark$	

	I 2.4]
	$= 5.0 \Omega$	3mks	
	$H = 12 \times 2.4 \times 60$	3mks	
	= 1728J	er.c	0.
	(iv) – Using a source with higher emf - Reducing the length of the coil	2mks	
	$= P = \frac{V^2}{V^2}$	2111K5	
1.5	R	4 1	
16.	(a) capacitance c is the charge stored in a capacitor per unit voltage (i) the deflection of the leaf decreases since the pd reduces with the	1mk	
	distance of separation, the greater the deflection, the smaller the	2mks	
	capacitance.		
	(ii) the deflection of the decreases since the pd increases with the area of overlaps or the greater the deflection the smaller the	2mks	
	capacitance.		
	(iii) the deflection of the leaf decreases, the capacitance increases	2mks	
	, since the smaller the deflection the greater the capacitance.	2111K5	
	$C_{T}=C_{1}+\frac{2}{C_{2}+C_{3}} \checkmark 1$		
	$=3 \mu E + \frac{4 \times 4}{\sqrt{1}} \sqrt{1}$	3mks	
	$-5\mu u + 4 + 4$	011115	
	$= 3 \mu F + 2 \mu F \checkmark I$		
	Charge on the 3 μ F capacitor is the same as the overall charge $O = CV \checkmark 1$		
	=5.0×10√1	a 1	
	=50C√1	3mks	
17.	T 36		
17.	$(a)(i)T = \frac{1}{20} = \frac{30}{20} = 1.8s$	2mks	
	$(ii) f = \frac{1}{T} = \frac{1}{1.8} = 0.5556 Hz$	3mks	
	$ \begin{array}{c} 1 & 1.8 \\ (c) 80 cm \Longrightarrow S4\lambda \end{array} $		
	$V = f\lambda$	3mks	
	$-\frac{1}{2} \times 0.2 - 0.111 m/s$		
	$-\frac{1.8}{1.8}$ $\times 0.2 - 0.11$ m/s		
18.	a)- A small force (effort) is used to overcome a large force (Load)		
	- Less energy is expended in doing work	2mks	
	b) (i) - In one revolution, both wheel and axle complete one circumference		
	- V.R = Effort Distance/Load distance = $2 \prod R/2 \prod r$	3mks	
	-V.R = R/r (ii) V P = 50/5 = 10		
	(ii) V.K = $50/5 = 10$ M.A = efficiency x V.R/100 = $90x10/100 = 9$		
	Effort = Load/M.A = $200/9$ = $22.22N$	3mks	
	c) Gas Pressure = At Pressure – Pressure due to H_a Volumn		
	$P_g = 1.0 \times 10^5 - 0.4 \times 13600 \times 10^{-110}$		
	$= 94560 \text{N/m}^2$	3mks	
			J

