PHYSICS FORM 2

TERM 12023

MARKING SCHEME

SECTION A

1.

0
10
Check for correct drawing
Main scale $3.3 \sqrt{ }$
Vernier scale $0.06 \sqrt{ }$
2. Volume of water displaced $=100-60=40 \mathrm{~cm}^{3}$

Volume of water displaced $=$ Vol. of stone $=40 \mathrm{~cm}^{3} \sqrt{ }$
$P=\frac{M}{V}$ (do not award a mark for the formula)

$$
P=\frac{567 \mathrm{~g}}{40 \mathrm{~cm}^{3}}=14.175 \mathrm{~g} / \mathrm{cm}^{3}(\text { correct substitution }) \sqrt{ }
$$

$\mathrm{P}=14.18 \mathrm{~g} / \mathrm{cm}^{3}$ (Answer must be given correct to $2 \mathrm{~d} . \mathrm{p}$)
3. Volume of drop $=5 \times 10^{-8} \mathrm{M}^{3}$
i. Area of circular film $=0.1 \mathrm{M}^{2}$

$$
V=A \times H
$$

$1 \mid \mathrm{Page}$

$$
\mathrm{h}=\frac{\mathrm{V}}{\mathrm{~A}} \sqrt{ }
$$

$$
\begin{aligned}
& \text { Size of molecule }=\frac{5 \times 10^{-8} \mathrm{~m}^{2}}{0.1 \mathrm{~m}^{2}} \\
& =5.0 \times 10^{-7} \mathrm{~m} V
\end{aligned}
$$

Accept 0.0000005

Check for correct units.
ii. Atoms are spherical $\sqrt{ }$

Mass uniformly distributes $\sqrt{ }$
4. Weight on Earth $=600 \mathrm{~N}$

Weight on Planet $=450 \mathrm{~N}$
Weight, $\mathrm{W}=\mathrm{Mg}$
$M=\frac{W}{g}$
Mass of body $=\frac{600 \mathrm{~N}}{10 \mathrm{~N} / \mathrm{Kg}}=60 \mathrm{Kg} \sqrt{ }$
$g=\frac{w}{m}$
$\mathrm{g}=\frac{450 \mathrm{~N} \sqrt{ }}{60 \mathrm{Kg}}=\frac{7.5 \mathrm{~N}}{\mathrm{Kg}} \sqrt{ }$
Correct substitution $\sqrt{ }$
Correct answer with correct units $\sqrt{ }$
5. The force of cohesion within the mercury is greater than the force of adhesion between mercury and glass $\sqrt{ }$. The mercury therefore sinks down \checkmark the tube to enable mercury molecules to keep together $\sqrt{ }$.
6. Temperature rise and impurities lower the surface tension of water $\sqrt{ }$
7. a)

b) The unbalanced $\sqrt{ }$ surface tension $\sqrt{ }$ pulls the thread tight
8. $\mathrm{h}=760 \mathrm{~mm}$

$$
\begin{aligned}
& \mathrm{p}=1.36 \times 10^{4} \mathrm{Kg} / \mathrm{m}^{3} \\
& \mathrm{p}=? \\
& \mathrm{p}=\mathrm{pgh}
\end{aligned}
$$

$$
\mathrm{p}=1.36 \times 10^{4} \times 10 \times \frac{760}{1000}
$$

Check on the conversion $\sqrt{ }$
Correct substitution $\sqrt{ }$
$\mathrm{P}=103,360 \mathrm{~N} / \mathrm{M}^{2}$
Accept $P=103,360$ pa $\sqrt{ } \quad$ check for correct units
9. The external pressure (atmospheric) is lower than the internal pressure $\sqrt{ }$: therefore the capillaries break $\sqrt{ }$.
10. The bottle with hole experiment - if diagram used; check for labeling $\sqrt{ }$: Procedure, observation and conclusion $\sqrt{ }$.
$3 \mid \mathrm{Page}$

Lowest jet has highest pressure
11. Solid - particles very close, hence low kinetic energy $\sqrt{ }$.

Liquids - particles fairly free, moderate kinetic energy $\sqrt{ }$
Gases - particles very free, high kinetic energy $\sqrt{ }$
12. The metal blade conducts heat from the hand but the wood cannot $\sqrt{ }$
13.

14. $(20 \times 0.3)+(20 \times 0.3) \sqrt{ } \quad$ or 20×0.6
$6+6=12 N M \sqrt{ }$
Check for correct units
15. Unlike poles attract while like poles repel $\sqrt{ }$

Reject - unlike charges attract while like charges attract
Reject - unlike terms attract while like terms attract
$4 \mid \mathrm{Pa}$

Check for direction of field $\sqrt{ }$
Check for presence of the neutral zone $\sqrt{ }$
16. This is due to the influence of the Earth's magnetic field $\sqrt{ }$
17. Repulsion only occurs between 2 like poles $\sqrt{ }$ but attraction may occur between 2 unlike poles or between a magnet and a magnetic materials $\sqrt{ }$

SECTION B

18. i. Iron is a soft magnetic material it can easily acquire magnetism and can easily lose magnetism.
ii. Check for correct direction

iii. A - North pole $\sqrt{ }$

B - South pole $\sqrt{ }$
iv. Right hard grip rule $\sqrt{ }$

It states that if a coil carrying current is grasped in the right hand such that the fingers point in the direction of current then the thumb points in the direction of North Pole $\sqrt{ }$.
ii. It would cause overheating on the electromagnet $\sqrt{ }$. This adversely affects the magnetism of the electromagnet $\sqrt{ }$.
19. i. Smoke particles - smoke particles are larger than air molecules and light enough to move when bombarded by air molecules $\sqrt{ }$

Lens - focuses the light from the lamp on the smoke particles, causing them to be observable Microscope - enlarges/magnifies the smoke particles so that they are visible $\sqrt{ }$
ii. Smoke particles more randomly/zigzag $\sqrt{ }$

Air molecules bombard the smoke particles
Air molecules are in random motion
iii. The speed of motion of smoke particles will be observed to be lighter/faster/speed increases $\sqrt{ }$.
20. a) Principle of moments states that for a system in equillbrium, the sum of clockwise moments must be equal to the sum of the anticlockwise moments.
b)

Clockwise moments $=$ Anticlockwise moments
$300 \times 1.5=\mathrm{X} \times 650 \sqrt{ }$
(correct substitution 1 mk)
$\frac{450}{650}=\frac{650 \mathrm{x}}{650}$

6
Page

$$
X=\frac{450}{650} V
$$

$$
\mathrm{X}=0.69 \mathrm{M} \sqrt{ }
$$

c)

Taking moments about P
Distance between P and $\mathrm{Q}=100-(20+30)$

$$
\begin{aligned}
& =100-50 \sqrt{ } \\
& =50 \mathrm{~cm} \\
& =0.5 \mathrm{~m}
\end{aligned}
$$

$\mathrm{F} 2 \times 0.5=0.3 \times 100 \sqrt{ }$

$$
\frac{0.5 \mathrm{~F} 2}{0.5}=\frac{30}{0.5}
$$

$$
\mathrm{F} 2=\frac{300}{5}=60 \mathrm{~N} \sqrt{ }
$$

Clockwise moments $=$ Anticlockwise moments
$\mathrm{F} 1+\mathrm{F} 2=100 \mathrm{~N} \sqrt{ }$
$\mathrm{F} 1+60 \mathrm{~N}=100 \mathrm{~N}$
$\mathrm{F} 1=100 \mathrm{~N}-60 \mathrm{~N}$
$\mathrm{F} 1=40 \mathrm{~N} \sqrt{ }$
21. a) Mass of water $=66.1-42.9 \sqrt{ }$

$$
=23.2 \mathrm{~g} \sqrt{ }
$$

b) Volume $=\frac{\text { Mass }}{\text { Density }}=\frac{23.2 \mathrm{~g}}{1 \mathrm{~g} / \mathrm{cm}^{3}}$

$$
=23.2 \mathrm{~cm}^{3} \sqrt{ }
$$

Working must be shown
c) Volume of density bottle $=$ volume of water

Volume of bottle $=23.2 \mathrm{~cm}^{3} \downarrow$
d) Mass of soil $=67.2-42.9$

$$
=24.3 \mathrm{~g} \sqrt{ }
$$

e) Mass of water that filled the space above the soil

$$
\begin{aligned}
& =82.0-67.2 \\
& =14.8 \mathrm{~g} \sqrt{ }
\end{aligned}
$$

f) Volume of soil

$$
\begin{aligned}
\text { Volume of water } & =\frac{\text { Mass }}{\text { Density }} \downarrow \\
& =\frac{14.8 \mathrm{~g}}{1 \mathrm{~g} / \mathrm{cm}^{3}}
\end{aligned}
$$

$$
=14.8 \mathrm{~cm}^{3} \sqrt{ }
$$

Volume of soil $=23.2-14.8$

$$
=8.4 \mathrm{~cm}^{3} \mathrm{~V}
$$

g) The density of the soil $=\frac{\text { Mass }}{\text { Volume }}$

$$
\begin{aligned}
& =\frac{24.3}{8.4} \sqrt{ } \\
& =2.893 \mathrm{~g} / \mathrm{cm}^{3} \sqrt{ }
\end{aligned}
$$

22. a) A - Seal and insulator $\sqrt{ }$

B - Zinc case $\sqrt{ }$
C - Mixture of carbon and manganese (IV) oxide $\sqrt{ }$
D - Carrbon rod $\sqrt{ }$
b) Zinc case acts as a negative electrode $\sqrt{ }$
c) i) Polarisation $\sqrt{ }$

Remedy - Adding a depolarizer e.g potassium dichromate $\sqrt{ }$
ii) Local action $\sqrt{ }$

Remedy - By amalgamation $\sqrt{ }$
Accept - use of pure zinc or coating zinc with mercury $\sqrt{ }$

