

PHYSICS F 4 M/S PP2

- Rectilinear propagation. √¹
- 4. (a) Unlike poles attract, like poles repel $\sqrt{1}$
 - (b) The keepers become magnetized thus neutralizing √ the pole; this reduces repulsion at the poles √ thus helping in retention of magnetism.
- 5. It has a wider field of view than that of a plane mirror. \checkmark

6

Total resistance R= $6+6+0.5\Omega=12.5\Omega$ Current I= V/R=3.0/12.5=0.24A

Total resistance R= $6+6+0.5\Omega=12.5\Omega$ Current I= V/R=3.0/12.5=0.24A

Total resistance R= $6+6+0.5\Omega=12.5\Omega$ Current I= V/R=3.0/12.5=0.24A

- 7. When the terminals of the heater are at a p.d of 240V and connected to an alternating current of frequency 50Hz, it converts 2500J of electrical energy to 2500 J of heat energy per second.
- 8. TV waves----microwaves—blue light---Ultra-violet—gamma rays.
- 9. Transformer uses a.c only while induction coil uses d.c Transformer produces a humming sound while induction coil is quiet

10, (a) Transverse Longitudinal wave

1.	Displacement of particles	- Displacement of particles in the
	in the wave is perpendicular	wave is parallel to the direction
	to the direction of wave motion.	of wave motion.
2.	Requires no medium for propagation.	- Requires a material medium for
		propagation.
3.	Can be mechanical or electromagnetic	- Purely mechanical wave.
	in nature.	-

Any 1 combination

(b)
$$f = \frac{1}{T} T = 2(S)$$

Hence
$$f = \frac{1}{2} = 0.5H_{\mathcal{Z}}$$

- (c) Can travel for long distances as a beam without getting scattered. (i)
- It can be reflected by tiny particles like grains hence can defect them. $\sqrt{1}$ (ii) Any 1

$$I = \frac{P}{V} = \frac{3000}{240}$$

$$= 12.5 A^{1}$$

The fuse is not suitable since the appliance is drawing more current than the

fuse rating $\sqrt{1}$ the fuse will blow off.

13. His car gets charged by friction during the day. He then acts as earth wire when he step on the ground holding the metal handle.

SECTION

14. (a) (i)
$$\frac{V_{P}}{V_{S}} = \frac{N_{P}}{N_{S}} \checkmark^{1}$$
$$\frac{800}{V_{S}} = \frac{2000}{150}$$

$$V_s = \frac{800 \times 150}{2000}$$

(ii) Power input = Power output
$$\sqrt{1}$$

$$I_P = \frac{1000}{800}$$

$$= 1.25 \text{A} \sqrt{1}$$

(iii)
$$I_s = \frac{Power\ output}{Output\ voltage} = \frac{1000}{60}$$

- (iv) Step-down transformer √1
- (b) (i) To minimize power loss.
 - Thick cables minimizes resistance.

(ii)
$$\frac{2000}{1000} \times 2 \times 30 = 120 kwh \checkmark 1$$

$$\frac{75}{1000} \times 10 \times 30 = 22kwh \checkmark ^{1}$$

$$\frac{1500}{1000} \times 1 \times 30 = \frac{45kwh}{189kwh}$$

Cost 187 × 9.50

(ii) No of units

Fuel levy

$$187 \times \frac{70}{100}$$

= 130.90

Standing charge= 200.00

Total charge = 1776.50 + 330.90

= Ksh.2107.40

- 15. (a) (i) Increasing the number of turns in the coil.
 - (ii) Increasing the size of current.
 - (iii) Using a soft iron core.
 - (iv) Reducing the length of the core.

(b)
$$E = IR + Ir$$

 $= 5 \times 1.6 + 5r$ --- (i)
 $E = 3.2 \times 2.8 + 3.2r$ ---- (ii)
Hence
 $5 \times 1.6 + 5r$ = $3.2 \times 2.8 \times 3.2r$
 $1.8r$ = $8.96 + 8$
 $1.8r$ = 0.96
 r = $\frac{0.96}{1.8} = \frac{0.5333}{1.8}$
 E = $5 \times 1.6 + 5 \times 0.53$
 $= 8 + 2.65$

= 10.65V

(d)
$$\int = \frac{RA}{\ell} \checkmark \bigcirc$$

$$\ell = \frac{10 \times 7 \times 10^{-8}}{1.1 \times 10^{-6}} \checkmark \textcircled{1}$$

$$= \frac{70}{1.1} \times 10^{-2} m$$

$$= 63.6 \times 10^{-2} \text{m}$$

or

(e) P.d across R = p.d across 10Ω resistor. $\checkmark \oplus$

$$V + IR = 2 \times 10 = 20V \checkmark ①$$

16. (a) (i) Long sight

(ii) --eye ball being too long
--focal length too short

b. It is the ability of the eye to focus the image on the retina

c. (i).
$$1/u + 1/v = 1/f$$

Apparent depth =22.5cm

(ii) n= real depth/apparent depth

real depth=n x AD

$$= 4/3 \times 45/2$$

=15x2

=30cm.

 $gn_1 = 1.4/1.6 = \sin 45^{\circ}/\sin r$

sinr =1.6sin45/1.4

=0.742

r = 53.0

d. (i). 45°

- 17. (a) (i) Increasing the surface area of the liquid. ✓ ①
 - (ii) Reducing the pressure on the liquid surface. ✓ ①
 - Heat gained by water = Heat lost by metal block (b) $M_W C_W \Theta_W = M_m C_m \Theta_m \checkmark \textcircled{1}$

$$2 \times 4200 \times (50 - T_1) = 10 \times 450 \times 70$$

$$50 \ T_1 = \frac{10 \times 450 \times 70}{2 \times 4200} = 37.5 \ \checkmark \bigcirc$$

$$T_1 = 50 - 37.5 = 12.5$$
°C \checkmark ①

- (c) Water has a high heat capacity hence can absorb a lot of heat ✓ ①
- Increasing the pressure on the ice. $\checkmark \bigcirc$ (d) (i)
 - Adding impurities e.g. salt ✓ ① (ii)
- (f) As ether evaporates, it extra it's the latent heat of vaporization from its surroundings

√① hence the water is cooled.

(g)	Heat	Temperature
	- Form of energy which flows	- Degree of hotness or coldness
	from a hotter to a cooler part of an object	of an object measured on a given scale.
	- Measured in joules	- Measured in Kelvin or °C.
	- Measured using a calorimeter	- Measured using a thermometer.
		Any two

- 18. Last...
- Up motion $h_1 = 40t 5t^2$ $\begin{cases}
 -5t^2 \\
 -5t^2
 \end{cases}$ (i) **√**1 But $h_1 + h_2 = 100m$ $100 = 5t^2 + -5t^2 + 40t\checkmark 1$ = 2.5 seconds **√**1

(ii)
$$hi = 40t - 5t^{2}$$

$$= (40 \times 2.2) - 5 (2.5)^{2} \checkmark 1$$

$$= 100 - 31.25$$

$$= 68.75 \text{m} \checkmark 1 \text{ from the ground}$$

(b)

(i)
$$w = 2\pi f$$

= $2 x \frac{22}{7} x 6 \checkmark$
= 37.7 radis \checkmark

(ii)
$$a = rw^2$$

= 0.6 x (37.7²) \checkmark
= 853.42 radis \checkmark

(iii)
$$\mathbf{F} = \mathbf{ma}$$

= 0.045 x 853.42 \checkmark
= 38.4N \checkmark

(iv)
$$\mathbf{v} = \mathbf{r}\mathbf{w}$$

= 0.6 x 37.7
= 22.62 m/s \checkmark