CHEMISTRY

(CONFIDENTIAL)

Requirements for candidates

In addition to the apparatus and fittings found in a Chemistry laboratory, each candidate will require the following.

1. about $100 \mathrm{~cm}^{3}$ of solution F
2. about $50 \mathrm{~cm}^{3}$ of solution G
3. $30 \mathrm{~cm}^{3}$ of solution M
4. $30 \mathrm{~cm}^{3}$ of solution N
5. one burette $0-50 \mathrm{ml}$
6. one pipette 25 ml
7. two conical flasks
8. 100 ml measuring cylinder
9. 200 ml or 250 ml beaker
10. About 500 ml distilled water
11. Phenolphthalein indicator
12. thermometer $\left(0-110^{\circ} \mathrm{C}\right)$
13. Source of strong heat (preferably Bunsen burner)
14. clock or stop watch
15. 2 boiling tubes
16. one CLEAN METALLIC spatula
17. 6 clean dry test-tubes
18. one test-tube holder
19. at least 6 cm length of universal indicator paper
20. 0.5 g of sodium hydrogen carbonate
21. pH chart $\mathrm{pH} 1-14$
22. Bromine water supplied with a dropper
23. 0.5 g of solid $\mathrm{K}-$ oxalic acid.
24. 0.5 g of solid P - Sodium sulphite

The students should have access to the following

a. 2.0 M NaOH solution with a dropper
b. 1.0 M barium nitrate solution with a dropper
c. Bromine water with a dropper
d. Acidfied potassium manganate (vii) with a dropper
e. 2.0 M HCl with a dropper

1. Bromine water is prepared by adding 1 ml of liquid bromine to $100 \mathrm{~cm}^{3}$ of distilled water and shaking thoroughly in a fume cupboard.
2. Acidified potassium permanganate is prepared by adding 3.16 g of solid potassium permanganate to $400 \mathrm{~cm}^{3}$ of 2 M sulphuric acid and diluting to one litre of solution using distilled water.
3. Solution M is made by dissolving 12.6 g of oxalic acid in $400 \mathrm{~cm}^{3}$ distilled water and making it to 1 litre.
4. Solution N is prepared by dissolving 3.16 g of potassium manganate (VII) in $200 \mathrm{~cm}^{3}$ of 2 M sulphuric acid and adding more water to make 1 litre
5. Solution F is prepared by dissolving 4 g of sodium hydroxide pellets in about $800 \mathrm{~cm}^{3}$ of distilled water and diluting it to one litre solution.
6. Solution G is prepared by dissolving 9.0 g of oxalic acid (ethan-1,2-dioic acid) in $200 \mathrm{~cm}^{3}$ of distilled water and diluting it to $250 \mathrm{~cm}^{3}$ solution.
