Download this and other FREE materials from https://teacher.co.ke/notes

CHEMISTRY PAPER 2 MARKING SCHEME

- 1.(a) (i) Element A and B
 - Both have 6 electrons to achieve an octet.
 - (ii) Oxide of B forms an alkaline solution that turns red litmus blue. Oxide of D forms acidic solution, that turns blue litmus red.
 - (iii) E has a bigger ionic radius than the ionic radius of C. E forms ions / ionizes by gaining electrons; which C ionizes by lose of electrons.
 - (iv) Formula; GH₂√1 (Rej H₂G)
- (v) Oxide of D is molecular with weaker vander waals forces, while the oxide of B is a giant ionic structure with stronger ionic bonds.

(vi)
$$GCO_{3(S)} \longrightarrow GO_{(S)} + CO_{2(g)} \checkmark 1$$

(b)
$$B + Cl_2 \longrightarrow BCl_2$$

1.5 litres of
$$Cl_2 \longrightarrow 5.9375$$
 of BCl_2

24 litres of
$$Cl_2 = (5.9375 \times \frac{24}{1.5})g BCl_2$$

= 95g

RFM of
$$BCl_2 = 95$$

RAM of
$$BCl_2 = 95-71=24$$

Or

$$B + Cl_2 \longrightarrow BCl_2$$

Moles of Cl₂ used =
$$\frac{1.5}{24}$$
 = 0.0625 moles

$$0.0625 \text{ moles Cl}_2 = 5.9375 \text{ BCl}_2$$

1 mole =
$$\left(\frac{5.9377g}{0.0625}\right)$$

$$=95g of BCl_2$$

RAM of B =
$$95 - 71 = 24$$
. (a) Gas A – Carbon (iv) oxide

(b) Liquid C – Ammonium Chloride Solution

√ ½

Solid D - Sodium Hydrogen Carbonate

(c) NH_4HCO_3 (aq) + NaCl (aq) $NaHCO_3$ (s) + NH_4Cl (aq)

Ca (OH)
$$_{2(aq)}$$
 + 2NH₄Cl $_{(aq)}$ — CaCl_{2 (aq)} ++ 2NH_{3 (g)} + 2H₂O $_{(I)}$

Penalize ½√ if not balance

½√ if there are no states

- (d) Ammonia Manufacture of fertilizers
 - Manufacture of Nitric acid
 - Refrigerant
 - Softening water
 - CaCl₂ Drying agent Name ✓1

- (e) Making of glass
 - Softening water
 - Making sodium silicate used in making detergents
- any two√1

- Paper Industry
- 3. (i) Condenser
- (ii) To indicate when a liquid is boiling, a thermometer reads a constant temperature
- (iii) A
- (iv) Ethanøl

Reason:- It has a lower boiling of 78°C compared to water with a boiling point of 100°C

- The liquid with the lower boiling point boils first and its vapours are condensed or and the condenser to be collected as the first distillate
- (v) Fractional distillation

(vi) - To separate components of crude oil

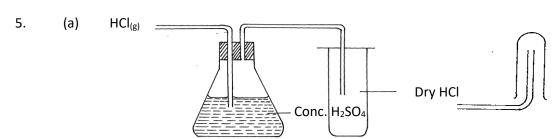
- To isolate O₂ and N₂ from air
- To manufacture spirits (vii)- They are immiscible liquids
- They have different but close boiling points \checkmark
- 4.a) To remove any magnesium oxide coating from the surface of magnesium// To remove any oxide film on it
 - b) White solid which is magnesium oxide
 - c) Increase in mass was due to oxygen which combined with magnesium
 - d) $2Mg(s) + O_{2(g)} ____ 2MgO(s)$

Penalize 1/2 for wrong or missing state symbols

e) The filtrate is magnesium hydroxide which is an alkaline

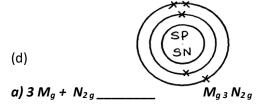
Red litmus paper changed blue, but blue litmus paper remained blue

- II. a) N_2O $\sqrt{1}$ (Nitrogen (I) oxide) Denitrogen Oxide.
- b) $K_2O \sqrt{1}$ (Potassium oxide)


(i) Yellow lead (II) oxide turned to red then grey.

(ii) I.
$$H_{2(g)} + PbO_{(s)}$$
 \longrightarrow $H_2O_{(l)} + Pb_{(s)}$

II. $2H_{2(g)} + O_{2(g)}$ \longrightarrow $2H_2O_{(l)}$


(iii) Reducing properties of hydrogen

Combustion nature of hydrogen

- (b) M is hydrogen
- (c) Conc. H₂SO₄ is a less volatile hence displaces a more volatile and from its salts i.e
- (a) 5 electrons
- (b) 11-5 = 6 neutrons

(c)
$$^{20}/_{100}$$
 x 10 + $^{80}/_{100}$ x 11 = 2+ 8.8 = 10.8

- b) Argon
- It is inert

a) 3
$$M_g + N_{2g}$$
 $M_{g3} N_{2g}$

- b) Argon
- It is inert

c)Haber process to manufacture ammonia

Hydrogenation

6.a) magnesium Oxide

- b) $2Mg_{(s)} + O2_{(q)}$ 2MgO_(s)
- c) i) Sodium sulphate
 - ii) MgCO₃
- d) $MgO_{(s)} + H_2SO_{4(aq)}$ ______ $M_gSO_{4(aq)} + H_2O_{(L)}$
- e) $Mg^{2+}(aq) + CO^{2-} 3(aq)$ $M_gCO_{3(s)}$
- f) $M_gCO_{3(g)}$ _____ $M_gO_{(g)} + CO_{2(g)}$
- g) Na⁺ ions and SO_4^{2-} ions
- h) Precipitation/double decomposition

7.

- (i) Z- Anhydrous calcium chloride √1mk Q- Water
- (ii) Reducing agent / effect √1mk

 Combustible gases / burning of hydrogen in air.
- (iii) The flame should be blown out $\sqrt{\frac{mk}{m}}$ first as the supply of hydrogen continues to avoid explosion. $\sqrt{\frac{n}{2}}$ Heating of CuO should be $\sqrt{\frac{mk}{m}}$ stopped to prevent re-oxidation $\sqrt{\frac{n}{2}}$ mk of hot copper before $\sqrt{\frac{n}{2}}$ mk the supply of hydrogen is stopped.
- (iv) Hydrogen so produced is at once oxidized to water $\sqrt{1mk}$ (strong oxidizing agent) Likelyhood of producing poisonous gases such as nitrogen (IV) oxide. $\sqrt{1mk}$
- a) Water molecules has lone pairs $\sqrt{1mk}$ of electrons which can be donated \sqrt{mk} and be shared with H⁺ to form H₃O⁺
- **b)** Is less dense than air / lighter than air. $\sqrt{1mk}$

