CHEMISTRY 233/3
(PRACTICAL)
TERM 22022 OPENER EXAM FORM 4
MARKING SCHEME

QUESTION1

TABLE 1

VOLUME OF WATER IN THE BOILING TUBE	TEMPERATURE AT WHICH CRYSTALS OF A APPEAR	SOLUBILITY OF SOLID A g/100g of water
4	70.0	125.0
6	59.0	83.3
8	54.0	62.5
10	47.0	50.0
12	40.0	41.7

AWARD a total of 7 MKS Distributed as follows.

1. Complete table $\mathbf{- 4 m k s}$

Condition and penalties

- A table with 8-10 values award 4
- A table with 6-7 values a ward 3
- A table with $4-5$ values award 2
- A table with 2-3 values award 1
- A table with 1 value award $1 / 2$
- A table with no value a ward 0

Penalties
a) Penalize $1 / 2 \mathrm{mk}$ for each wrong value of solubility
b) Penalize $1 / 2$ one for unrealistic temperature readings $1 / 2$ above $90^{\circ} \mathrm{C}$ and below $10^{\circ} \mathrm{C}$

2. DECIMALS TIED TO TEMPARATURE -1Mk

Accept;
i) Whole numbers
ii. Idecimal place where the decimal should be 0 or 5 i.e 70.0 or 70.5
iii. Accept 2 decimal places where it should be $.00, .25, .50$ or .75

NB: If no consistence penalize fully.
3. TREND - Tied to temperature i.e it should be decreasing (1mk)
4. Accuracy - tied to temperature when $4 \mathrm{~cm}^{3}$ of water was added Accept $\pm 2^{\circ} \mathrm{C}$ of the school value.

1a) GRAPH - award a total of 3mks distributed as follows.
i. Labeling ($1 / 2 \mathrm{mks}$)

- Both axis should be labeled if one is not or wrongly labeled award 0
- Ignore units but if indicated they should be right otherwise penalize fully
ii. Scale - ($1 / 2 \mathrm{mks}$)
- The actual plotting should be half of the page
- Paralyze fully if scale changes on the way both axis must be correct.
iii. Plots (1mk)

4-5 correct plots award (1mk)
3 correct plots award ($1 / 2 \mathrm{mks}$)
Less than 3 correct plots award 0
iv. Line - a smooth curve passing through 3 or more correct plots award 1 mk Otherwise award 0
b) - award $1 / 2 \mathrm{mk}$ for sloping or the graph

- award $1 / 2 \mathrm{mk}$ for calculating

NB:
i. Award fully for calculation from correct graph even if not shown on the graph
ii. Reject any value from a wrong graph.

TABLE 2

	$\mathbf{1}$	$\mathbf{1 1}$	$\mathbf{1 1 1}$
FINAL BURET READING	12.5	12.5	12.5
INITIAL BURET READING	0.0	0.0	0.0
VOLUME OF SOLUTION B USED	12.5	12.5	12.5

Award a total of 5mks distributed as follows
a) Complete table

- Complete table with 3 titration 1 mk
- Incomplete table with 2 titrations $1 / 2 \mathrm{mk}$
- Incomplete table with 1 titration 0 mks

Penalties

i. Wrong arithmetic
ii. Invented table
iii. Unrealistic values i.e burette reading with more than $50 \mathrm{~cm}^{3}$ and less than $1 \mathrm{~cm}^{3}$ withoutexplanation.
iv. Unrealistic titre values

NB: PENETICE ½ once

b) Use of decimals (1 mk) (Tied to the $1^{\text {st }}$ and $2^{\text {nd }}$ row only)

Accept 1 or 2 decimal places used consistently otherwise penalize fully

- If 2 dp are used the $2^{\text {nd }}$ should be a " 0 " $O R$ " 5 " e.g 20.10 or 20.15 otherwise penalize fully
- Accept the use of Zero as the initial burette reading i.e $0,0.0$ or 0.0

C) Accuracy (1mk)

Complete the candidate value with the school value (S.V)
i. If within ± 0.1 of the school value award 1 mk
ii. If within ± 0.2 of S.V ward $1 / 2 m k$ otherwise award 0

NB: Tick the candidate value that deserves a credit

D) PRINCIPLE OF AVERAGING 1MK

Conditions

i. If 3 titration done but only two are consistence and averaged award 1 mk
ii. If 3 titration are done and consistency and averaged award 1 mk
iii. If two titration are done and are consistency and averaged award 1 mk
iv. If three consistency titration one done but 2 are averaged award 0
v. If three 3 titration are done and are inconsistence and are done averaged award zero
vi. If two titration are done and are inconsistence and are averaged award 0

PERALTIES

i. Penalize $1 / 2$ for wrong arithmetic
ii. penalize $1 / 2 \mathrm{mk}$ if no working is shown and answer is correct
iii. penalize fully if no working is shown and answer given is wrong
iv. Accept rounding off or truncation to the $2^{\text {nd }} d . p$ e.g $12.666 \quad 12.67$
or
$12.66 \quad 12.66$

NB:

- The working of average must be marked before the mark for averaging is award in table 2.
- Accept the average volume if it work out exactly to a whole number.

FINAL ACCURACY ---------------------(1MK) Tiled to correct average time.
Compare the candidate average time to the school value.
i. If within ± 0.1 award 1 mks
ii. If with $\mathrm{n} \pm 0.2$ award $1 / 2 \mathrm{mk}$

Otherwise award 0

NB:

- If there are 2 possible correct average titre, use the one the one close to the school value and award accordingly.
- If wrong value are averaged, pick the correct values average for the candidate and award accordingly.
- Record the marks as follows besides the table to the right.

CT -1 mk
D $\quad-1 \mathrm{mk}$
A $\quad-1 \mathrm{mk}$
PA $\quad-1 \mathrm{mk}$
FA -1 mk

Total 05 mks

b) Calculate the number of moles of B used

1000-0.13
12.5 ?
$=\frac{12.5 \times 0.13}{1000}$
$\sqrt{1 / 2}$
0.001625 moles

$=0.0040625$
$1 / 2$
c) $\operatorname{Ans} \frac{b \times 5}{2}$
$=0.0040625$
$\sqrt{ } 1 / 2$
d) Ans $\frac{c \times 1000}{25}$
$\sqrt{1} 1 / 2$
$=0.1626 \mathrm{~m}$
$\sqrt{1} 1 / 2$
e) $5 \mathrm{~g} 250 \mathrm{~cm}^{3}$
$20 \mathrm{~g}-1000$
$\frac{1 \times 20}{0.1625}$
$=123.07 \quad \sqrt{1} 1 / 2$
f) $90+18 x=123$

$$
\begin{aligned}
18 x & =33 \\
x & =\frac{33}{18} \\
x & =1.83 \\
& =2
\end{aligned}
$$

QUESTION 2

A) OBSERVATION	INFERENCES
No white precipitate	$\mathrm{Ba}^{2+} \mathrm{Ca}^{2+}$ and Pb^{2+}
Formed (1mk)	Absent
	Each $1 / 2 \mathrm{mks}$
	Penalize $1 / 2 \mathrm{mk}$ to a maximum of $1 \frac{1}{2} \mathrm{mks}$ for
	any contradictory ion

B) OBSERVATION	INFERENCES
No white precipitate insoluble in excess	Zn^{2+} absent (1mk)
NB: White precipitate $1 / 2 \mathrm{mk}$	Penalize 1 mk for each contradicting ion to a
$\quad-\quad$ Insoluble in excess $1 / 2 \mathrm{mk}$	maximum of (1mk)

C) OBSERVATION	INFERENCES
A white precipitate $1 / 2$ Insoluble in excess $1 / 2$	Mg^{2+} present (1mk) - Accept Al^{3+} absent for $1 / 2 m k$ - Panelize 1 mks for any contracting ion to a Maximum of 1 mks

D) OBSERVATION	INFERENCES
A white precipitate is formed $1 / 2 \mathrm{mks}$	$\mathrm{C}^{-}, \mathrm{So}_{3}{ }^{2-}, \mathrm{SO} 4^{2-}$ and CO^{2-} present
-	$-1 / 2 \mathrm{mk}$ each
	Penalize $1 / 2 \mathrm{mk}$ for any contradictory ion to a
	maximum of $(2 \mathrm{mks})$

E) OBSERVATION	INFERENCES
No white precipitate formed	CI- Present (1mks)
	-accept $\mathrm{SO}_{4}{ }^{2-} \mathrm{AND} \mathrm{SO}_{3}{ }^{2-} \mathrm{OR} \mathrm{CO}_{3}{ }^{2-}$ absent for fully marks penalize 1 mks for any contradictory ion to a maximum of 1 mks - Three anions given -1 mk
	- Two anions given $-1 / 2 m k$ - One onion given - 0 mk

QUESTION 3

a) OBSERVATION	INFERENCES
No fizzing/bubbling /hissing (1mk)	R- CooH Absent (1mk)
Reject	NB: Ignore $\mathrm{H}_{3} \mathrm{O}+\& \mathrm{H}^{+}$
-fissiling	
-Sizzling	

b) OBSERVATION	INFERENCES
KMno4 get decolorized	C=C OR -C=C- $(1 / 2 \mathrm{mk})$
Or	Present
KMno4 turns from purple to colorless $(1 \mathrm{mk})$ Reject $\quad \quad$ The solution turns colourless	R- OH Present ($1 / 2 \mathrm{mks})$

- It turns colourless	NB: Penalize $1 / 2 m k$ for any contradictory group to a maximum of 1 mks
c) OBSERVATION	INFERENCES
Yellow /orange bromine water does not get decolonized Accept It remains yellow or orange	$\mathrm{C}=\stackrel{\mathrm{C}}{\mathrm{C}} \text { or }-\mathrm{C} \equiv \mathrm{C}-$ Absent Penalize 1 mk for any contradictory group to a maximum of 1 mk

d) OBSERVATION	INFERENCES
K2CrO7 turns from orange to green(1mk)	R-OH Present (1mk) Penalize 1mk for any contradictory group to a maximum of 1mk

