

CHEMISTRY 233/3

(PRACTICAL)

TERM 2 2022 OPENER EXAM FORM 4

MARKING SCHEME

QUESTION1

TABLE 1

VOLUME OF WATER IN	TEMPERATURE AT WHICH	SOLUBILITY OF SOLID A
THE BOILING TUBE	CRYSTALS OF A APPEAR	g/100g of water
4	70.0	125.0
6	59.0	83.3
8	54.0	62.5
10	47.0	50.0
12	40.0	41.7

AWARD a total of 7 MKS Distributed as follows.

1. Complete table – 4mks

Condition and penalties

-	A table	with 8-10 values	award 4
-	A table	with 6-7 values	a ward 3
-	A table	with 4- 5 values	award 2
-	A table	with 2-3 values	award 1
-	A table	with 1 value	award ½
-	A table	with no value	a ward 0

Penalties

- a) Penalize 1/2 mk for each wrong value of solubility
- b) Penalize $\frac{1}{2}$ one for unrealistic temperature readings $\frac{1}{2}$ above 90°C and below 10°C

2. DECIMALS TIED TO TEMPARATURE -1Mk

Accept;

i) Whole numbers

ii. Idecimal place where the decimal should be 0 or 5 i.e 70.0 or 70.5

iii. Accept 2 decimal places where it should be .00, .25,.50 or .75

NB: If no consistence penalize fully.

- 3. TREND Tied to temperature i.e it should be decreasing (1mk)
- Accuracy tied to temperature when 4cm³ of water was added Accept±2^oC of the school value.
 - 1a) **GRAPH –** award a total of 3mks distributed as follows.
 - i. Labeling (½mks)
- Both axis should be labeled if one is not or wrongly labeled award O
- Ignore units but if indicated they should be right otherwise penalize fully
 - ii. Scale (½mks)
- The actual plotting should be half of the page
- Paralyze fully if scale changes on the way both axis must be correct.
 - iii. Plots (1mk)

4-5 correct plots award (1mk)

3 correct plots award (½mks)

Less than 3 correct plots award 0

iv. Line – a smooth curve passing through 3 or more correct plots award 1mk
 Otherwise award 0

b) – award $\frac{1}{2}$ mk for sloping or the graph

- award ½ mk for calculating

NB:

- i. Award fully for calculation from correct graph even if not shown on the graph
- ii. Reject any value from a wrong graph.

TABLE 2

	1	11	111
FINAL BURET READING	12.5	12.5	12.5
INITIAL BURET READING	0.0	0.0	0.0
VOLUME OF SOLUTION B USED	12.5	12.5	12.5

Award a total of 5mks distributed as follows

a) Complete table

Download this and other FREE materials from https://teacher.co.ke/notes

(1mk)

- Complete table with 3 titration 1mk
- Incomplete table with 2 titrations ½ mk
- Incomplete table with 1 titration 0 mks

Penalties

- i. Wrong arithmetic
- ii. Invented table
- iii. Unrealistic values i.e burette reading with more than 50cm³ and less than 1cm³withoutexplanation.
- iv. Unrealistic titre values

NB: PENETICE ¹/₂ once

b) Use of decimals (1mk) (Tied to the 1st and 2nd row only)

Accept 1 or 2 decimal places used consistently otherwise penalize fully

- If 2 dp are used the 2nd should be a "0" OR "5" e.g 20.10 or 20.15 otherwise penalize fully
- Accept the use of Zero as the initial burette reading i.e 0,0.0 or 0.0

C) Accuracy (1mk)

Complete the candidate value with the school value (S.V)

- i. If within ± 0.1 of the school value award 1mk
- ii. If within \pm 0.2 of S.V ward $\frac{1}{2}$ mk otherwise award 0

NB: Tick the candidate value that deserves a credit

D) PRINCIPLE OF AVERAGING ------1MK

Conditions

- i. If 3 titration done but only two are consistence and averaged award 1mk
- ii. If 3 titration are done and consistency and averaged award 1mk
- iii. If two titration are done and are consistency and averaged award 1mk
- iv. If three consistency titration one done but 2 are averaged award 0
- v. If three 3 titration are done and are inconsistence and are done averaged award zero

vi. If two titration are done and are inconsistence and are averaged award 0

PERALTIES

- i. Penalize ¹/₂ for wrong arithmetic
- ii. penalize ½mk if no working is shown and answer is correct
- iii. penalize fully if no working is shown and answer given is wrong
- iv. Accept rounding off or truncation to the 2nd d.p

e.g 12.666 12.67

or

12.66 12.66

NB:

- The working of average must be marked before the mark for averaging is award in table 2.
- Accept the average volume if it work out exactly to a whole number.

FINAL ACCURACY ------(1MK) Tiled to correct average time.

Compare the candidate average time to the school value.

- i. If within±0.1 award 1mks
- ii. If with $n \pm 0.2$ award $\frac{1}{2}$ mk Otherwise award 0

NB:

- If there are 2 possible correct average titre, use the one the one close to the school value and award accordingly.
- If wrong value are averaged, pick the correct values average for the candidate and award accordingly.
- Record the marks as follows besides the table to the right.
- CT 1mk
- D 1mk
- A -1mk
- PA -1mk
- FA 1mk

Total 05 mks

b) Calculate the number of moles of B used

1000-0.13

12.5?

	-			
	$=\frac{12.5\times0.13}{1000}$		1/2	
	0.001625 moles		1/2	
	= 0.0040625		1/2	
c)	Ans $\frac{b \times 5}{2}$			
	= 0.0040625		1/2	
d)	Ans $\frac{c \times 1000}{25}$		1⁄2	
	= 0.1626m		1/2	
e)	5g 250cm ³			
	20g - 1000			
	1×20			
	0.1625			
	= 123.07 √	1/2		
f)	$90 + 18x = 123 18x = 33 x = \frac{33}{18}$			
	<i>x</i> = 1.83 = 2			
	_			

QUESTION 2

A) OBSERVATION	INFERENCES
No white precipitate	Ba ²⁺ Ca ²⁺ and Pb ²⁺
Formed (1mk)	Absent
	Each ½ mks
	Penalize ½mk to a maximum of 1 ½ mks for
	any contradictory ion

2

B) OBSERVATION	INFERENCES
No white precipitate insoluble in excess	Zn ²⁺ absent (1mk)
NB: White precipitate ½ mk	Penalize 1mk for each contradicting ion to a
- Insoluble in excess ½ mk	maximum of (1mk)

C) OBSERVATION	INFERENCES
A white precipitate ½	Mg ²⁺ present (1mk)
Insoluble in excess ¹ / ₂	 Accept Al³⁺ absent for ½mk
	- Panelize 1mks for any contracting
	ion to a Maximum of 1mks

D) OBSERVATION	INFERENCES
A white precipitate is formed ½ mks	C1-, So_3^{2-} , SO4 ²⁻ and CO3 ²⁻ present
-	– ½ mk each
	Penalize ½mk for any contradictory ion to a
	maximum of (2mks)

E) OBSERVATION	INFERENCES
No white precipitate formed	CI- Present (1mks)
	-accept SO4 ²⁻ AND SO3 ²⁻ OR CO3 ²⁻ absent
	fo <mark>r fully m</mark> arks
	penalize 1mks for any contradictory ion
Teach	to a maximum of 1mks
1 Gaon	- Three anions given – 1mk
	- Two anions given -½mk
	- One onion given – Omk

QUESTION 3

a) OBSERVATION	INFERENCES
No fizzing/bubbling /hissing (1mk)	R- CooH Absent (1mk)
Reject	NB: Ignore H ₃ O+ & H ⁺
-fissiling	
-Sizzling	

b) OBSERVATION	INFERENCES
KMno4 get decolorized	C= C OR -C= C- (½mk)
Or	Present
KMno ₄ turns from purple to colorless (1mk)	
Reject	R- OH Present (½mks)
- The solution turns colourless	

- It turns colourless	NB: Penalize ¹ /2mk for any contradictory
-	group to a maximum of 1mks
c) OBSERVATION	INFERENCES
Yellow /orange bromine water does not get	
decolonized	$C = C$ or $-C \equiv C$ -
Accept	Absent
It remains yellow or orange	Penalize 1mk for any contradictory group
	to a maximum of 1mk

d) OBSERVATION	INFERENCES
K2CrO7 turns from orange to green(1mk)	R-OH Present (1mk)
	Penalize 1mk for any contradictory
	group to a maximum of 1mk

