MARKING SCHEME
QUESTION ONE
You are providd with the following;

- A 40m1 glass beaker
- A Bunsen burner
- A thermometer
- A stop Watch
- A tripod stand and a measuring cylinder 100 ml
- A wire gauze
- A source of heat

Set up the apparatus as shown in the diagram below.

Measure $100 \mathrm{~cm}^{3}$ of water and pour it into the beaker. Take the initial temperature of the water.
$\mathrm{T}_{0} \quad 27^{\circ} \mathrm{c}$
(1 mark)

Now heat the water to a temperate of $90^{\circ} \mathrm{C}$. Switch off the gas tap and place a thermometer into the beaker and start the stop watch when the temperature is 650 C . Take the temperatur $\mathrm{T}^{\circ} \mathrm{C}$ of water every two minutes.

Record your results in the table below.

Time (t) (min)	2	4	6	8	10	12	14
Temperature $(\mathrm{T})^{\circ} \mathrm{C}$	60	57	54	52	50	48	47
$\left(\mathrm{~T}-\mathrm{T}_{0}\right)^{0}$	33	30	27	25	23	21	20
$\mathrm{Log}\left(\mathrm{T}-\mathrm{T}_{0}\right)$	1.5185	1.4771	1.4314	1.3979	1.3617	1.3222	1.3010

(i) Plot graph of $\log (T-T o)$ against Time (t)
(5 marks)
(ii) Find the value K of $\log \left(T-T_{o}\right)$ when $t=0$

$$
K=1.56 \text { shown the graph }
$$

Determine the antilog of K.
Antilog K=36.31
(iii) Calculate the temperature of the surrounding T_{R} using the expression

Antilog K $65-\mathrm{T}_{\mathrm{R}}$
$36.31=65-\mathrm{T}_{\mathrm{R}}$
$\mathrm{T}_{\mathrm{R}}=65-36.31$
$\mathrm{T}_{\mathrm{R}}=28.69^{\circ} \mathrm{C}$
QUESITON TWO
This question has two parts A and B. answer both parts
PART A
You are provided with the following:

- A meter rule
- Two identical 100 g masses
- About 200 ml of liquid L in 250 ml beaker
- Three pieces of thread, each about half metre long
- Stand with clamps
- Tissue paper

Proceed as fol'ows:

(a) Using a stand and one piece of thread, suspend the metre rule in air such that it balancçs horizontally. Record the position of the centre of gravity.
G. $=500 \mathrm{~mm}$

NOTE: The metre rule should remain suspended at this point through out the experiment.
(b) Set up the apparatus as in figure 2 below.

Liquid L

Suspend the sums A at a distance $x=50 \mathrm{~mm}$. Adjust the position of mass B until it balances mass A immersed in liquid L .

Record the ditance d, of mass B from the pivot.
Repeat the saiie process for other values of x in table 2 below and complete the table.

$\mathrm{x}(\mathrm{mm})$	50	100	150	200	250	300
	5	10	15	20	25	30
$\mathrm{~d}(\mathrm{~cm})$	4.4	9.2	13.6	18.2	23.0	27.4

Graph
(d) Determine the slope,S of the graph

Gradient $=\frac{\mathrm{DY}}{\mathrm{DS}}=\frac{14-0}{15-\mathrm{C}}$

$$
=0.9333 \quad(2 \text { marks })
$$

(e) Given $S=\underline{F}$, where F is the apparent weight of objects A in the liquid L and W is W the actual weight of A, find: -
i) The value $\underline{F}(2$ marks $)$

$$
0.9333=\mathrm{F} / 1
$$

$$
\mathrm{F}=09333 \mathrm{~N}
$$

(ii) The up thrust, U
$\mathrm{U}=1-0933$

$$
\mathrm{U}=\mathrm{W}-\mathrm{F}
$$

$\mathrm{U}=0.0667 \mathrm{~N}$
(3 marks)

PART B

You are provided with the following:

- A concave mirror with holder
- A screen
- A meter rule
- A candle
- A match box (to be shared)

Proceed as follows:

(f) Set p the apparatus as in figure 3 below.

Figure 3
(g) Put th object at a distance $u=30 \mathrm{~cm}$ from the mirror. Adjust the position of the screen until a sharp image is formed on the screen. Record the distance V.
(h) Repeat procedure (g) above for the distance $\mathrm{u}=40 \mathrm{~cm}$ and record the new distance V. complete the table below

$\mathrm{U}(\mathrm{cm})$	$\mathrm{V}(\mathrm{cm})$	$\mathrm{M}=\mathrm{V} / \mathrm{U}$	$(\mathrm{m}+1)$	Teacher.co.ke 30
40	22.5	1.333	2.333	

(i) Given, $f=\frac{V}{(m+1)}$ calculate the values off hence determine the average value $\mathrm{f}_{\text {av }} \quad$ (3mks)
$\mathrm{f}_{1}=\frac{22.5}{2.333}=9.657 \mathrm{~cm}$
$\mathrm{f}_{2}=\underline{30.1}=12.924 \mathrm{~cm}$ 2.329
$\mathrm{f}_{\mathrm{av}}=\frac{\mathrm{f} 1+\mathrm{f} 2}{2}=\frac{9.657+12.924}{2}$
$=11.2905 \mathrm{~cm}$

