PHYSICS 232/3 MARKING SCHEME QUESTION ONE

You are providd with the following;

- A 40m1 glass beaker
- A Bunsen burner
- A thermometer
- A stop Watch
- A tripod stand and a measuring cylinder 100ml
- A wire gauze
- A source of heat

Set up the apparatus as shown in the diagram below.

Measure 100cm³ of water and pour it into the beaker. Take the initial temperature of the water.

T₀ 27°c

(1 mark)

Now heat the water to a temperate of 90°C. Switch off the gas tap and place a thermometer into the beaker and start the stop watch when the temperature is 650C. Take the temperatur T°C of water every two minutes.

Record your results in the table below.

Time (t)	2	4	6	8	10	12	14
(min)							
Temperature (T) ^o C	60	57	54	52	50	48	47
$(T - T_0)^0$	33	30	27	25	23	21	20
$Log(T - T_o)$	1.5185	1.4771	1.4314	1.3979	1.3617	1.3222	1.3010

(i) Plot graph of Log (T — To) against Time (t)

(5 marks)

(ii) Find the value K of $\log (T - T_o)$ when t =0	(2 n
K = 1.56 shown the graph	
Determine the antilog of K.	(2 marks)
Antilog K= 36.31	
(iii) Calculate the temperature of the surrounding T_R using the expression	
Antilog K 65 - T _R	(3 marks)
$36.31 = 65 - T_R$	
T_{R} =65-36.31	
$T_{R} = 28.69^{\circ}C$	
QUESITON TWO	
This question has two parts A and B. answer both parts	
PART A	
You are provided with the following:	
- A meter rule	
- Two identical 100g masses	
- About 200m1 of liquid L in 250m1 beaker	
- Three pieces of thread, each about half metre long	
- Stand with clamps	
- Tissue paper	

acher.co.ke

Proceed as fol'ows:

(a) Using a stand and one piece of thread, suspend the metre rule in air such that it balances horizontally.

Record the position of the centre of gravity.

G.=500 mm

NOTE: The metre rule should remain suspended at this point through out the experiment.

(b) Set up the apparatus as in figure 2 below.

Teacher.co.ke

Suspend the sums A at a distance x = 50mm. Adjust the position of mass B until it balances mass A immersed in liquid L.

Record the ditance d, of mass B from the pivot.

Repeat the saile process for other values of x in table 2 below and complete the table.

x (mm)	50	100	150	200	250	300
	5	10	15	20	25	30
d (cm)	4.4	9.2	13.6	18.2	23.0	27.4

Graph

(d) Determine the slope, S of the graph

 $Gradient = \frac{DY}{DS} = \frac{14-0}{15-C}$

= 0.9333 (2 marks)

(e) Given S = <u>F</u>, where F is the apparent weight of objects A in the liquid L and W is W the actual weight of A, find: -W
i) The value <u>F</u> (2 marks)

0.9333 = F/1

F = 09333N

(ii) The up thrust, U

U=1-0933	U=W-F
U=0.0667N	(3 marks)

PART B

You are provided with the following:

- A concave mirror with holder
- A screen
- A meter rule
- A candle
- A match box (to be shared)

Proceed as follows:

(f) Set p the apparatus as in figure 3 below.

(g) Put th object at a distance u = 30cm from the mirror. Adjust the position of the screen until a sharp image is formed on the screen. Record the distance V.

(h) Repeat procedure (g) above for the distance u=40cm and record the new distance V. complete the table below

Teacher.co.ke

U(cm)	V(cm)	M=V/U	(m+1)	
30	22.5	1.333	2.333	Teacher.co.ke
40	30.1	1.329	2.329	

(i) Given, $f = \frac{V}{(m+1)}$ calculate the values off hence determine the average value f_{av} (3mks)

 $f_1 = \underline{22.5} = 9.657 \text{cm}$ 2.333

 $f_2 = \frac{30.1}{2.329} = 12.924 cm$

$$f_{av} = \frac{f1 + f2}{2} = \frac{9.657 + 12.924}{2}$$

