

TEACHER.CO.KE EXAMINATIONOPENER TERM 12022FORM FOUR232/1PHYSICSPAPER 1MARKING SCHEME

SECTION A: (25MKS)

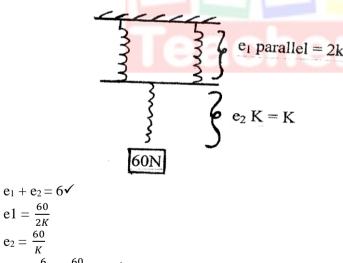
- 1. Thickness of 10 cover slips = 2.56 + 0.01 = 2.57mm
- 2. Thickness of each cover slip \Box

(2mks)Adhesion force

between glass and water molecules is greater than cohesion force between water molecules \checkmark Cohesion force between mercury molecules is greater than adhesion force between mercury and glass molecules \checkmark

3. $5 \times 0.3 + 2 \times 0.7 = w \times 0.2 \checkmark$

1.5 + 1.4 = 0.2w2.0 = 0.2w


W = 14.5N✓

4. Pressure due to mercury column = pressure due to air column \checkmark (0.75 - X) 13600 × 10 = 1088 × 1.25 × 10 \checkmark 0.75 - X = 0.1 X = 0.65

Reading = 65 cm Hg

- 5. a) Stability of the block reduces
 - b) Addition of water \checkmark raises the position C.O.G \checkmark

$$= \frac{\frac{6}{2K} + \frac{60}{K}}{= \frac{60 + 120}{2K}} = 6$$

= 180 = 12K

$$K = 15 N/cm \checkmark$$

- 7. Balloon will expand, therefore Upthrust on the balloon increases, \checkmark thus clockwise moments increases more than anti clockwise moments \checkmark .
- 8. Having a thinner capillary tube \checkmark
- 9. Gas inside the bottle expands, pushing the cork. \checkmark The core expands more than the bottle hence becoming loose \checkmark 10. $a = \frac{v-u}{t} = \frac{0-30}{0.05}$ OR Ft = m4v

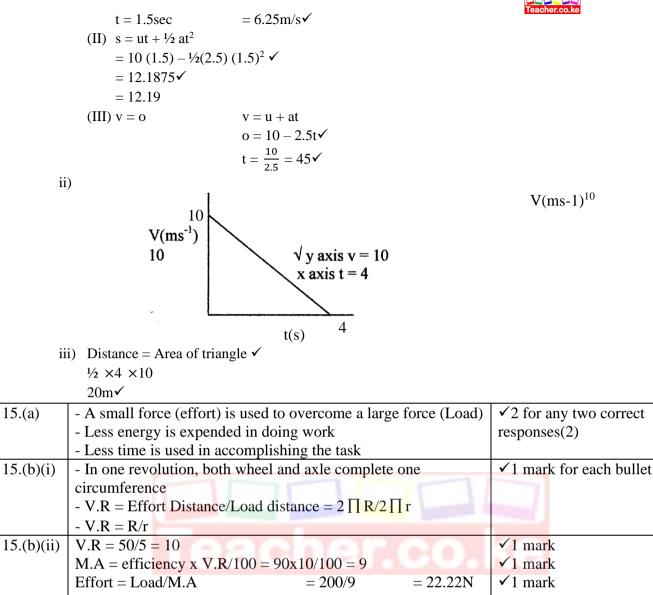
 $=\frac{-30}{0.05}$ $= - 600 \text{m/s}^2$ F = ma $=\frac{20}{1000} \times -600\checkmark$ = -12NRetarding force = $12N\checkmark$

11. Iron gate when touched conducts heat away from the hand while wood does not because it is a poor conductor of heat ✓

 $f = \frac{m4v}{t}$ $= \frac{0.02 \times 30}{0.05} = -12N$

0.05

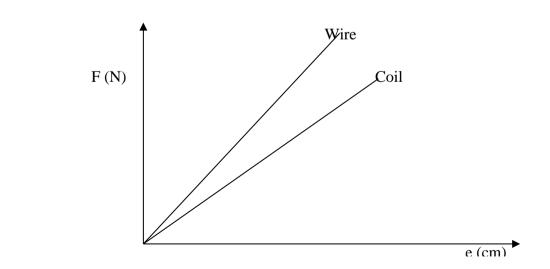
SECTION B


- 12. a) Steam line flow where all the particles of the fluid move in the same direction at the same velocity at a particular point: ✓ Turbulent: particle moves with different velocities. ✓
 - The papers are observed to separate \checkmark because of low pressure on the sides $\checkmark A$ and B h)

b) The papers are observed to separate
$$\gamma$$
 because of now pressure on the states γ related
c) $A_1V_1 = A_2V_2$
 $0.05 \times 2.6 = 0.1 \times A_2 \checkmark$
 $A_2 = \frac{0.05 \times 2.6}{0.1} = 1.3 \text{m}^2 \text{ OR } 13000 \text{ cm}^2$
U sing $\pi r^2 = A$
 $\pi r^2 = 13000$
 $3.142r^2 = \frac{13000}{3.142}$
 $r^2 = 4237$
 $d = 2r$
 $d = (\sqrt{(r^2)}) \times 2$
 $d = 128.65 \text{ cm} \checkmark$
 $d)$ i) Gas pressure \checkmark
 $ii) 56 \text{ cm Hg} \checkmark$
 $iii) 760 \text{ cm Hg} + 56 \text{ cm Hg} = 816 \text{ cm Hg} \checkmark$
 $iii) 760 \text{ cm Hg} + 56 \text{ cm Hg} = 816 \text{ cm Hg} \checkmark$
 $iii) 760 \text{ cm Hg} + 56 \text{ cm Hg} = 816 \text{ cm Hg} \checkmark$
 $iii) 760 \text{ cm Hg} \times \frac{2}{7} \times \left(\frac{0.05}{2}\right)^3$
 $= 6.5476 \times 10^{-5} \text{ cm}^3 \checkmark$
 $iii) A = \pi r^2$
 $= \frac{22}{7} \times \left(\frac{15}{2}\right)^2 \checkmark$
 $= 176.786 \text{ cm}^2 \checkmark$
 $h = \frac{6.5476 \times 10^{-5}}{176.786} \checkmark$
 $= 3.7037 \times 10^{-7} \text{ cm} \checkmark$
(c) - Oil drop is perfectly spherical
- Size of oil molecule is same as thickness of patch.
- Patch is one molecule thick. (Max. 2 marks)
a) OA : object is accelerating
AB: object is accelerating gently and non-uniformly

BC: Object moving at constant speed

(I) u = 10m/sb) i) v = u + at $a = -2.5 m/s^2$ $= 10 - 2.5 \times 1.5$


14.

16.(a) For an elastic material, the extension is directly proportional to the force producing it provided the elastic limit is not exceeded. $\sqrt{1}$

b (i)

15.(a)

(ii). The wire has a greater constant of elasticity $\sqrt{1}$ than material hence coil of the same greater gradient.

iii).

Load	0.00	1.00	2.00	4.00	5.00	6.00	
L	10.00	11.50	13.50	16.00	18.00	24.00	
E	0.00	1.50	3.50	6.00	8.00	14.00	$\sqrt{1}$

iv) Suitable axes labelled $\sqrt{1}$

All points correct $\sqrt{1}$

Suitable line $\sqrt{1}$

v) Springs constant
$$K = \Delta F = \sqrt{1}$$

 $\triangle e$

Use students graph Correct units $\sqrt{1}$

