

Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided above
- Sign and write the date of examination in the spaces provided.
- Answer all questions in the spaces provided in the question paper.
- You are not allowed to start working with the apparatus for the first 15 minutes of the $2 \frac{1}{4}$ hours allowed for this paper. This time is to enable you to read the questions paper and make sure you have all the chemicals and apparatus that you may need.
- All working must be clearly shown where necessary.
- Mathematical tables and electronic calculators may be used.

FOR EXAMINER'S USE ONLY:

Question	Maximum Score	Candidate's Score
1.	20	
2.	8	
3.	12	
TOTAL	$\mathbf{4 0}$	

You are provided with:
Metal carbonate, MCO_{3}, solid \mathbf{Q}
2M hydrochloric acid, solution \mathbf{P}
Sodium hydroxide, solution \mathbf{R} containing 40 g per litre of solution.
You are required to determine the relative atomic mass of metal \mathbf{M}

PROCEDURE

Measure accurately $100 \mathrm{~cm}^{3}$ of solution \mathbf{P} into a clean $250 \mathrm{~cm}^{3}$ conical flask and add all the 4.69 g of solid $\mathrm{Q},\left(\mathrm{MCO}_{3}\right)$. Shake well and wait for effervescence to stop. Label the resulting solution as S 1 . Pipette $25 \mathrm{~cm}^{3}$ of solution \mathbf{R} into a conical flask and add 2-3 dropped of phenolphthalein indicator. Fill a burette with solution S 1 and titrate against the solution \mathbf{R} until the end point. Record your results in the table below. Repeat the procedure to fill the table Table 1

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution S1 used $\left(\mathrm{cm}^{3}\right)$			

Calculate
(i) Average volume of S1 used
(ii) Moles of sodium hydroxide, solution \mathbf{R} used
($\mathrm{Na}=23, \mathrm{O}=16, \mathrm{H}=1$)
\qquad
\qquad
(iii) Moles of Hydrochloric acid, solution S1 in average volume used.
\qquad
\qquad
(iv) Moles of Hydrochloric acid, solution S1 in $100 \mathrm{~cm}^{3}$ of solution
\qquad
\qquad
(v) Moles of hydrochloric acid in $100 \mathrm{~cm}^{3}$ of the original solution \mathbf{P}
(vii) Moles of MCO_{3} that reacted
(viii) The relative formula mass of MCO_{3}
\qquad
(ix) The atomic mass of $\mathbf{M} \quad$ (1 mk)
2. You are provided with solid \mathbf{X}. Carry out the tests below and record your observations and inferences in the table below.
(a) Place one spatula endful of solid \mathbf{X} in a test-tube and add about $10 \mathrm{~cm}^{3}$ distilled water. Shake well and use for test (i) below.
(i) Test $2 \mathrm{~cm}^{3}$ of the solution in the test tube with red litmus paper and blue litmus paper.
$\left.\begin{array}{|c|c|}\hline \text { Observations } & \text { inferences } \\ \hline & \\ & 1 \mathrm{mk}\end{array}\right] 1 \mathrm{mk}$
(ii) $\mathrm{To} 2 \mathrm{~cm}^{3}$ of the solution in the test tube, add spatula endful of sodium hydrogen carbonate
$\left.\begin{array}{|c|c|}\hline \text { Observations } & \text { inferences } \\ \hline & \\ & 1 \mathrm{mk}\end{array}\right] 1 \mathrm{mk}$
(iii) To $2 \mathrm{~cm}^{3}$ of the solution, add three drops of acidified potassium Manganate VII solution.

Observations	inferences	
	1 mk	

(iv) Place about $4 \mathrm{~cm}^{3}$ of ethanol in a test tube and add 2 drops of concentrated sulphuric acid then add a spatula endful of solid \mathbf{X}. warm the mixture carefully. Shake well and pour the mixture into $20 \mathrm{~cm}^{3}$ of water in beaker.

Observations	inferences
	1 mk

3. You are provided with solid \mathbf{N}. Carry out the tests and record the observations and inferences in the spaces provided
(a) Dissolve one spatula endful of solid \mathbf{N} in about $10 \mathrm{~cm}^{3}$ of distilled water. Divide the solution into five portions

Observations	inferences
	1 mk

(b) To the $1^{\text {st }}$ portion add aqueous NaOH solution dropwise until in excess

Observations	inferences		
	1 mk		1 mk

(c) To the $2^{\text {nd }}$ portion add dilute ammonia solution dropwise until in excess

Observations	inferences	
1 mk		

(d) To the $3^{\text {rd }}$ portion add three drops of dilute Sulphuric (VI) acid

Observations	inferences	
	1 mk	

(e)To $4^{\text {th }}$ portion add 3 drops of Lead (II) nitrate solution.

Observations	inferences	
1 mk		

(f) To $5^{\text {th }}$ portion add 3 drops of Lead (II) nitrate solution and warm the mixture gently

Observations	inferences
	1 mk

