THE SAMIA SUB-COUNTY EVALUATION TEST

MATHEMATICS PAPER 2

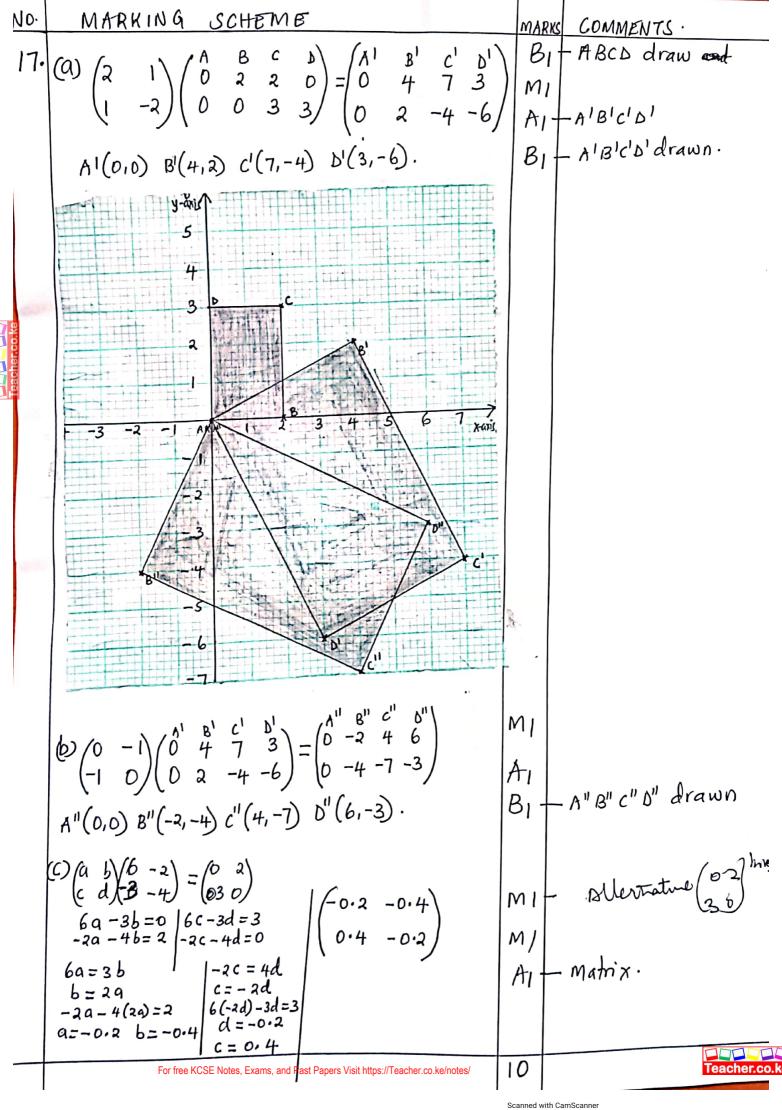
MARKING SCHEME

NOV/DEC, 2021

CONFIDENTIAL

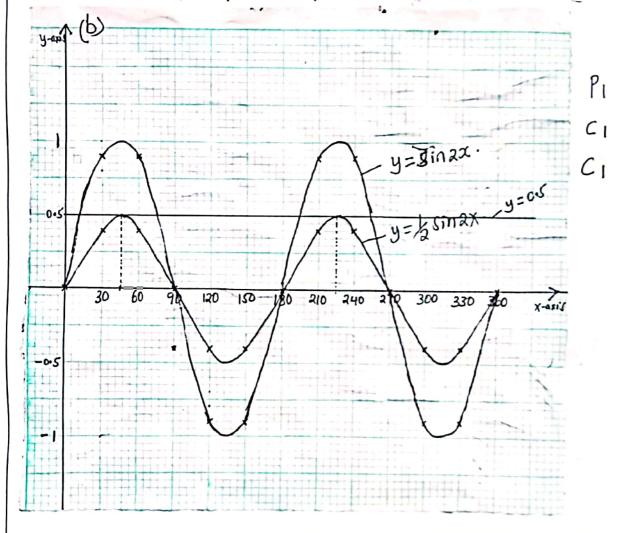
KENYA CERTIFICATE OF SECONDARY EDUCATION

MARKING SCHEME


NO		MARKS	COMMENTS
1.	TR H - Tr h max)		- Both minimum and
	(3.142×19.52×139.5) - (3.142×14.52×140.5)	ha.	maximum volumes
	-	1011 -	- correct operation
	= 166,666.9973 - 92815.07275		C. A. O. (A) o mound man (A)
	= 73 851.92455.		C·A·O (No rounding off).
	2)	03	
۷.	$2(1-\cos^2 x) + 3\cos x - 1 = 0$		1 + + + + + +
	$2 - 2\cos^2 x + 3\cos x - 1 = 0$	M_1-	-Gorrect equation
co.ke	$2\cos^2 x - 3\cos x - 1 = 0$ $ ef \cos x = y$		
acher.	$2y^{2}-3y-1=0$		
	$y = 3 \pm \sqrt{9 + 8} = 3 \pm \sqrt{17} - 1.78077640\%$	M, -	- Attempt to solve the equation
	$y = 3 \pm \sqrt{9+8} = 3 \pm \sqrt{17} = 1.780776408$ $4 -0.280776406$		the equation
	$COS \propto = 1.780776406$ $COS \propto = -0.280776406. = 73.69°$		
	Cos x =-0.280776406.=73.69° (TC)	M 1 -	-values of corx
	$\therefore x = 180 - 73.69 = 106.31.$		
	x = 180 + 73.69 = 253.69		A.M
	x = 106.31, 253.69		- All values of x.
-2.	(62.0) (2.0)	04	
.5	(3,0)	151	
	$(-2,0) (3,0)$ $(x+2)(x-3) = 0$ $x(x-3) + 2(x-3) = 0; x^2 - 3x + 2x - 6 = 0$	MI	Expanding.
	$= x^2 - x = 6.$	A-1	Expanding.
	*	03.	
4.	2^6 2^5 2^4 2^3	B1 -	-Correct expansion.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$\frac{1}{64} + \frac{6}{576} \times + 2160 \times^{2} + 4320 \times^{3}$		
	$2 + 3\dot{x} = 2.09 \times = 0.03$	MI	- Correct substitution
	64+576(0.03)+2160(0.03)2+4320(0.03)3	' `	
	= 83.34064	AI	
		03	
	For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/notes/		Teacher.co.ke
		A	

NO 5.	MARKING SCHE	ME	MARKS	S COMMENTS.
5.	$M = KN + CN^2$	$C = \frac{1}{2}$	M,-	Two equations
	$ \pm 100 = -2000$	$1050 = 10k + 50$ $k = 100$ $M = 100N + \frac{1}{2}N^{2}$		- Solving
-	-200 -200 I		03	
6.	A B sl· 140 160 3 5			esympton of finds Cost price per kg.
Teacher.co.	Cost price per kg of (40x3) + (160xs) = 1	the mixture 52.50	M ₁ -	- And prossion for % profit
	Profi7 = 180 - 15.	· · · · · · · · · · · · · · · · · · ·	A, -	Allow 18.03%.
	9. P = 27.5 × 102	7. = 18=7.		
			03	
7.	$AB = B - A$ $\begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ $\sqrt{(-4)^2 + 2^2 + (-2)^3}$	$=\sqrt{24} = 4.90$	M, -	AB expressed in column vector Attempt to find The magnitude C.A.O.
		•	03.	- σ η σ σ
8.	9, 12, 14, 16, 15	B, 20, 23.		- Q1 and Q3 correct
•	$Q_1 = 12$ $Q_3 = 2$	0	M, -	- Operation
	$\phi_1 = 12 \phi_3 = 2$ $\frac{20 - 12}{2} = \frac{8}{24}$	= 4.	A1 -	- Q, and Q3 correct - Operation - G.A.O.
0				
				_

For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/notes/


NO	MARKING SCHEME	MARKS	COMMENTS
9	R = 3 Centre (3, -4)	M	- Circle equation
	$(x - \frac{3}{4})^2 + (y + \frac{1}{2})^2 = (\frac{3}{4})^2$		
	$X^{2} - \frac{6^{3}x}{4^{2}} + \frac{9}{16} + y^{2} + y + \frac{1}{4} = \frac{9}{16}$	M, -	Expansion (All terms Should be correct):
	$X^{2} - \frac{3x}{2} + y^{2} + y = \frac{9}{16} - \frac{9}{16} - \frac{1}{4}$		Should be
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
•	$4 \times x^2 + 4 y^2 - 6x + 4y + 1 = 0$	AI	
7 0	17719 02 149 17 = 0	03	
operioo.	log, x2 + log, 5 = log, 10 + log, 16	M,-	-Single logs on both sides
Tea	$\log_{10}(5x^2) = \log_{10}(160)$	M -	- making 2 the subject
	$5x^2 = 160$		J
	$\sqrt{\chi^2} = \sqrt{32} = \pm 4\sqrt{2}$	A ₁ -	· .
i,	$X = \pm 4\sqrt{2}$	03	
11.	B x 2 x 22 x 6371 cos 52 = 2400	M 1 -	- Correct Substitution
	$\frac{\theta}{360} \times 2 \times \frac{22}{7} \times 6371 \cos 52 = 2400$ $\theta = 35.04^{\circ}$	A 1 -	-value of o
	37.05-35.04 = 2.01		- position of C.
	C (52°N, 2.01°W)	B ₁ -	- position of C.
		03	
12.	$\frac{2x^3}{3} - \frac{3x^2}{2} - 14x + 0$	M_1	- Integration
	$\frac{\left(2\left(3\right)^{3}-3\left(3\right)^{2}-14\left(3\right)\right)-\left(\frac{2\left(-1\right)^{3}}{3}-\frac{3\left(-1\right)^{2}-14\left(-1\right)}{2}\right)}{\left(18-13\cdot5-42\right)-\left(-\frac{2}{3}-\frac{3}{2}+14\right)}$ $-37\cdot5-11\frac{2}{6}$	M1-	- operation
	$(18-13.5-42) - (-\frac{3}{2}-\frac{3}{2}+14)$		-
	-37.5 - 11%	A 1 -	Must be exact.
. ,	$=-49\frac{1}{3}$		MUST DE EXACT
		03	
	For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/notes	ı	Teacher.co.
	The state of the s		the second secon

<u>NO.</u>	MARKING SCHEME	MARKS	COMMENTS.
13.		BI	Mud point of of
	0	Bı	bdentyging points
	P	B ₁	Both Largents'
		03.	
14·	3(3-55) + 355(3+55)		- Rationalizing the
cher.co.	(3+Js) (3-Js) 9-3J5+9J5+15	,	denominator and eschanding to runerd
Tea	9 ~ 5	M -	- a + b T5 (for expression
	$\frac{24 + 655}{4} = 6 + 1.555$	6	
	a=6 and b=1.5 or 1/2.		- values of a and b
15.		03.	
15.	(i) LBED = 37°; angles in alternate segment.	B _k	for the agle
	(i) LABE = 57°; angles in alternate segment	Br	11
		04.	
16.	Det = (x2) - (3x4) = -10	MI	
*	Area of AA'B'C' = 12.5 X-10 = -125	M	
	= 125cm².	AI	
		03.	
		50 MA	RKC.
		3	
,			
	For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/notes/		Teacher.co.k

No.	MARKING SCHEMB	MARKS	COMMENTS.
	(a) $B0 = \sqrt{\frac{14^2 + 14^2}{2}} = 9.899$	Ві	COMINIBIOIO
	$V0 = \sqrt{20^2 - 9.899^2} = 17.38$	Bı	
	$VN = \sqrt{7^2 + 17.38^2} = 18.74$	B ₁	
s.Ke	(b) 18.74 17.38 $\sin \theta = \frac{17.38}{18.74}$ $= 68.04^{\circ}$	M ₁ - A ₁	-Angle identification -Correct substitution
	(c) $Tan\theta = 17.38$ 9.899	M	
	=60.34	A	
	/3.12	M/	
	$= 48.99 \times 2$ $= 97.98^{\circ}$	A	
		10	
	•		
	For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/notes/		Teacher.co.k

	MARKING -SCHEME.	MARKS COMMENTS
19.	MARKS f x d^{-57} fd d^2 fd^2 cf 30-34 1 32-25 -25 625 625 1	Bi + fd column.
	35-39 5 37-20-100 400 2000 6	B1 + C.f column
	45-49 10 47-10-100,100 1000 26	B ₁ + c·f column B ₁ + d - column B ₁ + fd ² column
	50-54 19 52-5-95 25 475 45 55-59 20 57 0 0 0 0 65	B1 + fd2 column
	60-64 20 62 5 100 25 500 85	
co.ke	70-74 4 72 15 60 225 900 97	
Teacher	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(i) Actual mean.	MI - correct substitution
	$\overline{X} = A + \frac{\sum fd}{\sum f}$	A1 + C.A.O.
	$57 + \left(\frac{-170}{100}\right) = 55.30$	
	(ii) 50th percentile.	M1 - correct substitution
	$\frac{50}{100} \times 100 = 50.$ $54.5 + \left(\frac{50 - 45}{20}\right) 5$	A1 + G. A. O.
	3	A1+G.A.O.
	= 55.75.	
	(iii) Standard deviation.	M1 - correct substitution
	$ \frac{\sum f d^2 - \left(\sum f d\right)^2}{\sum f} $	M1 - correct substitution : A1 - Atleast 4 s.f.
	$\left[\frac{9750}{100} - \left(\frac{-170}{100}\right)^{2}\right]$	A1 + Atleast 4 s.f.
	= 194.61 = 9.726767192.	
,	For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/no	tes/ Teacher.co.

(C) Amplitude = 0.5 Period = 180° BI

Bı

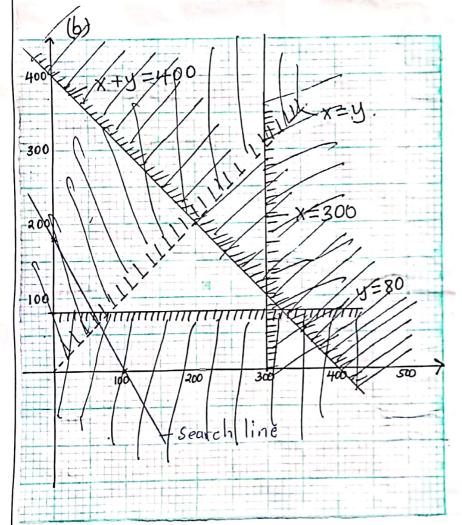
(Wi)x = 0°, 90°, 180° 270°, 360°

BI

(i) X=45°, 225°

BIBI

10



		MARKS
21.	(a) Taxable income per month.	M)
	$\frac{115}{100}$ x 48,000 - 3000 + 2500 + 3500	A
	= 58,200.	(1)
	(b) 11, $180 \times \frac{10}{100} = 1118$	M1 - 1st two slabs M1 - 3rd and 4th slabs M1 - Last slab
	10,534 × 15 = 15 80·10	My - 3rd and 4th slaby
o.ke	$10,534 \times \frac{20}{100} = 2106.80$	M, - Last slab
eacher.c	10,533 x 25 = 2633.25	'
	15419 × 30 = 4625.70 1118 + 1580.10+2106.80 +2633.25+4625.70	M/ - Operation
	= 12,063.85	
	12063.85-1648=10,415.85.	A1
	(C) Total deductions	M
	10 415.85 + 1250 + 1200 + 3000 = 15,865.85.	m,
	58,200-15,865.85	\[\langle \]
	= 42,334·15.	
		~-1
	,	
		,
	For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/notes/	Teacher.co.k

ND	MARKING SCHEME	MARKI	COMMENTS
22	(O) (i) a = 2		4 1 1 1
	$S_8 = \frac{\Pi}{2} (2a + (0 - 1)d)$		- correct substitution
	$156 = \frac{8}{2}(4 + 7d)$	A, -	C'A'O.
	7d=35 d=5.		
	$\frac{(11)}{416} = \frac{1}{2} (4 + (1 - 1)5)$	M1-	formation of quadratic eqn:
	832 = 40 +50²-50 50²-0 = 832 = 0	,	egn.
ther.co.ke	$ \Pi = \underbrace{1 \pm \sqrt{1 + 16646}}_{10} = \underbrace{1 \pm 129}_{10} \Pi = 13 $ $ \Pi = 13 \text{ only}. $	A1-	- C.A.O.
Teac	(bxi)a+2d, a+4d, a+7d	M1-	
	$\frac{a+4d}{a+2d} = \frac{a+7d}{a+4d}$	MI	
	$a^{2} + 8ad + 1bd^{2} = a^{2} + 9ad + 14d^{2}$ $ad = 2d^{2}$	221.	-value of a
	a=ad; $a=ax3=6$.	[[]	
	a+2d	B ₁	_
	$\theta 6 + 2(3) = 6 + 6 = 12$		
	$\frac{a+4d}{a+2d} = \frac{6+4(3)}{12} = 1.5.$		
			- correct substitution
	$S_q = \frac{\alpha(r^n - 1)}{r - 1}$	M_1	
	$\frac{12(1.5^9-1)}{1.5-1} = 898.640625$		
	1.5-1	A_{I}	- C·A·O
	= 898.6.		
		10	
	For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/notes/		Teacher.co.

NO.	MARKING SCHEME.	MARKS	
23.	(a) 0.55 M - MMM	B1 - Correct labelling	
	0.55 M - M - M F M		
	0.53 N 0.45 F - MFF		2,00
	0.43 F 0.55 M 0.75 F - FMF	BI - correct probabilit	16J ·
	OSS MOH F-MMF OSS MOH F-MFM OSS M-FM OH F-MF OH F-MF		
		MI	
	(b) P(FFF) = 0.45 x 0.45 x 0.45		
.co.ke	= 0.091125 or <u>729</u> 8000	A-1	
Teacher.co.ke	(i) P(Allows 1) 1 2 C		
	(i) P(Atleast a male) = 1 - P(FFF)	M	
	$=1-\frac{729}{8000}=0.908875$		
	<u>7271</u>	AI	
	8 000		
	(iii) P(At least 2 Females).	MI	
	P(MFE) or P(FMf) or P(FFM) + P(FFF).	M1	
	(0.55 x 0.45 x 0.45) + (0.45 x 0.55x 0.43) .+	, '	
	(0.45x0.45x0.55) + (0.45x0.45x0.45)	M/	
	= 0.425	A1 + C.A.O.	
+		10	
y, •			
= .			
	For free KCSE Notes, Exams, and Past Papers Visit https://Teacher.co.ke/notes	Tea	acher.co.k

(a)	x+y	4	400	•
-----	-----	---	-----	---

(i)
$$\frac{x}{100} + \frac{y}{120} = 1$$

$$X = 300 \text{ y} = 100$$

(ii)
$$600(300) + 400(100)$$

= 220,000.

BI

MARKS

BI

Bj

By

BI

BI

Bi

B1

B1

By