Energy changes in chemical and physical processes

1. (a) $\nabla H=\frac{120 \times 4.2 \times 4.5}{1000}$
$=+2.268 \mathrm{KW}$
($1 / 2 m k$)
(1/2mk)
(b) \quad RFM of $K_{N O}=39+14+48=101$
$6 \mathrm{~g} \quad 2.268 \mathrm{KJ}$
$101 g \quad \frac{101 X 2.268}{6} \checkmark \quad(1 / 2 m k)$
$=+38.178 \mathrm{KJ} \mathrm{mol}^{-1} \checkmark \quad(1 / 2 \mathrm{mk}$
2. (i) Heat evolved when one mole of a substance is completely burnt in oxygen
(ii) RFM of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=46$

Molar mass $\xlongequal{1 / 246 g}$
Heating value $=\frac{1370 ~ K J}{46 g}$
$=29.78 \mathrm{KJ} / \mathrm{g}$ (with units)
3. $\mathrm{Ca}(\mathrm{q})+\mathrm{C}(\mathrm{q})+3 / 2 \mathrm{O} 2(\mathrm{~g})$
4. a) $\boldsymbol{C}_{2} \mathrm{H}_{6} \mathrm{O}_{(\mathrm{l})}+\mathbf{3} \mathrm{O}_{(\mathrm{g})}$ \qquad $2 \mathrm{CO}_{2(g)}+3 \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{DH}=\mathrm{MCDT}$

$$
\begin{aligned}
& \frac{200}{1000} X 4.2 \times 32.5=-27.3 \mathrm{Kj} \\
& 0.92 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \\
& \text { - 27.3Kj } \\
& 46 g \\
& \overline{\underline{46 g} X 27.3 K j}^{0.92}=-1365 K j \\
& \mathrm{DHC} \mathrm{C}_{2} \mathrm{HSO}_{4}=-1365 \mathrm{Kj} \mathrm{~mol}
\end{aligned}
$$

5. i) $U, V, Y, Z \quad$ All the 4 or nay 3 exclusively correct penalize $1 / 2$ mk if wrong answer
ii) $\boldsymbol{Y Z} \quad$ is/are included any 2 correct $1 / 2$ mk
6. (a) $611-389=+222 \mathrm{KJ}$
(b) $H=+222-(611-100) \quad \checkmark 1 / 2$

$$
=-289 \mathrm{~K} \Lambda
$$

(c) Exothermic reaction $\quad \checkmark 1 / 2$
7. $\quad 2 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{Hf}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{l})$

$$
2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

$$
\begin{aligned}
& 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \Delta H f+\Delta H_{3}=\Delta H_{I}+\Delta H_{2} \\
& \therefore \Delta H f=\Delta H_{1}+\Delta H_{2}-\Delta H_{3} \sqrt{ }^{1 / 2} \\
& =-393 \times 2+-286 \times 3+1386 \wedge \\
& =-786-858+1386 \\
& =-1644+1386 \downarrow \\
& \Delta H f=-258 \mathrm{KJmol}^{-1} \sqrt{ } / 1 / 2
\end{aligned}
$$

8. a) i) the yield of NH_{3} would be lowered $\sqrt{1 / 2}$ any supply of heat makes NH_{3} to decompose to N_{2} and H_{2}
ii)the yield of NH_{3} would be increased
b) a catalyst accelerate the rates of both forward and reverse reactions equally $\sqrt{1} 1 / 2$. Equilibrium position is not affected by a catalyst $\sqrt{1} 12$
9. a) Breaking of ' $C=C$ ' $=+610 K J$

Breaking of 'Br $-\mathrm{Br}^{\prime}=+\underset{803 \sqrt{193}}{\underline{80}}$
Formation of $2 \mathrm{C}-\mathrm{Br}=\underline{-560}$
Formation of $\mathbf{c - c} \quad+243 \mathrm{Kj}$

$$
\frac{-346}{-103 K J V}
$$

b) Addition reaction/ halogenation $\sqrt{ }$
10. $\boldsymbol{H} \boldsymbol{H}$

$$
\begin{aligned}
& C=C+H-H
\end{aligned} \begin{array}{lll}
C=C-C-H \\
H & H & H
\end{array}
$$

Bond breaking

$$
\begin{array}{lrr}
4 C-H-4 x 410=1640 & 6 C-H & 6 x 410 \\
C=C-1 x 610=610 & & =2460 \\
H-H-1 x 436=\frac{436}{2686} & C-C- & \frac{345}{2805}
\end{array}
$$

$$
\begin{aligned}
& H=2686-2805 \\
& =-119 \mathrm{Kj} / \mathrm{Mol}
\end{aligned}
$$

11. (i) Graph
labeling -*TZM*
plotting - *TZM*
scale - *TZM*
line - *TZM*
total 5 mks
(ii) Shown on the graph -*TZM*
(iii) Heat change $=\mathbf{M C T}$

$$
\begin{aligned}
& =\frac{50}{100} \times 4.2 \times 10.2 \\
= & 2.142 \mathrm{~kJ}
\end{aligned}
$$

(iv) RFM of $\mathrm{KNO}_{3}=39+14+48$

$$
\begin{gathered}
=101 \\
H=2.142 \times \frac{101}{20.2}=-10.71 \mathrm{Kjmol}^{-1}
\end{gathered}
$$

12.

MCT $=\frac{100}{1000} X 4.2 \times 6=2.52 \mathrm{Kj}$
Moles of $\mathrm{NH}_{4} \mathrm{NO}_{3}=\underline{1.6}=0.02$ moles

If 0.02 mol 2.52 Kj

1 mol \qquad $\frac{1 X 2.52}{0.02}=+126 \mathrm{KJ} / \mathrm{mol}$
13. a) $2 \mathrm{NaHCO}_{3(\mathrm{~g})}$ \qquad $\mathrm{Na}_{2} \mathrm{CO}_{3(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(g)}$
b) i) $2 L_{(g)}+D_{2(g)}$ \qquad $2 L D_{(g)}$
ii) Amphoteric oxide
iii) Element H has a giant atomic structure with strong covalent bonds throughout its structure while D has simple molecular structure with weak Vader wall forces (2 m)
iv) - Used in advertising signs (Advertisements)

- Used in florescent tubes (Any two correct use)
v) C has a smaller atomic radius than B because it has stronger nuclear charge// more number of protons which attract the outer energy level electrons more firmly (2 mks)
vi) $4 L_{(s)}+O_{2(g)}$ \qquad $2 L_{2} \mathrm{O}_{(\mathrm{g})}$
Moles of $L=\frac{11.5}{23}=0.5$ moles
Moles of $\mathrm{O} 2=\frac{0.5}{4}=0.125$ moles
Volume of $\mathrm{O}_{2}=0.125 \mathrm{~mol} \mathrm{X} 24=3 \mathrm{dm} \mathrm{d}^{3}$

$$
\begin{aligned}
& 4 L_{(s)}+O_{2(g)} 2 L 2 O_{(s)} \\
& \text { If } 4 x 23 g \\
& 11.5 g \text { of } L _ \\
& 24 \mathrm{dm}^{3} \\
& \frac{11.5 \times 24}{4 x 23}=3 \mathrm{dm}^{3}
\end{aligned}
$$

14. (a) Drawn on the graph

$$
\begin{gathered}
\boldsymbol{A}=1 / 2 \boldsymbol{m} \boldsymbol{k} \\
\boldsymbol{S}=1 / 2 \boldsymbol{m} \boldsymbol{k} \\
\boldsymbol{P}=1 / 2 \boldsymbol{m} \boldsymbol{k} \\
\boldsymbol{C}=1 / 2 \boldsymbol{m} \boldsymbol{k}
\end{gathered}
$$

b) $32.5^{\circ} \mathrm{C} \pm 1$ Read from the student's correctly plotted graph.
c) $20^{\circ} \mathrm{C} \pm 0.5 \quad$ Line is extrapolated downwards from the student's correct graph.
d) It is end point/ complete neutralization.
e) The reaction is exothermic hence as reaction proceeded more heat was produced.
f) Reaction was complete hence solution lost heat through radiation to the surrounding.
g) $10.2 \mathrm{~cm}^{3} \pm 0.1$. Read from the student's correct graph.
h) Moles $=\frac{M x V}{1000}$

$$
=\frac{10.2 \times 4}{1000} \sqrt{ } 1 / 2=0.0408 \text { moles } \sqrt{ } 1 / 2
$$

i) Moles $=\frac{M \times V}{1000}$

$$
=\frac{2 \times 20}{1000} \sqrt{ } 1 / 2 \quad=0.04 \text { moles } \sqrt{1 / 2}
$$

$$
\begin{array}{rll}
\text { j) } \mathrm{HBr} & : \mathrm{NaOH} & \\
0.0408 & : & 0.04 \\
0.0408 & : & \underline{0.04} \\
0.04 & & \\
1 & : 1 & \\
\mathrm{HBr}_{(a q)} & +\mathrm{NaOH} & \mathrm{NaBr}_{(a q)}+\mathrm{H}_{2} \mathrm{O}(l)
\end{array}
$$

$$
\text { k) } \begin{aligned}
\Delta H & =M C \Delta t \\
& =\frac{-30.2 g x 4.2 J \times 16.3}{g^{0} c} \\
& =-2067.49 J \sqrt{ } 1 / 2
\end{aligned}
$$

Ans. in (h) = -2067.49 J.

$$
\begin{array}{ll}
\therefore 1 \text { Mole }=\frac{1 \times 2067.49 J}{\text { Ans in "h" }} \sqrt{1 / 2} & \text { e.g. } \frac{1 \times 2067.49}{0.0408} \\
\quad=- \text { Ans. } & \text { e.g } 50673.82 \mathrm{~J} \mathrm{~mol}^{-1} \\
& \text { Or } 50.67382 \mathrm{KJ} \mathrm{~mol}^{-1} \sqrt{1 / 2}
\end{array}
$$

15. a)(ii) Max. temperature attained: $\mathbf{2 9}^{\circ} \mathrm{C}$
(iii) Temperature change o the reaction $=(29-115)^{\circ} c$

$$
=14^{0} c
$$

Mass of NaOH used $=(114.35-108.15) g$

$$
=6.2 \mathrm{~g}
$$

$$
\begin{aligned}
& \text { R.F.M of } \mathrm{NaOH}=40 \mathrm{~g} \\
& \text { Moles of } \mathrm{NaOH} \text { used }=\frac{6.2}{40} \text { moles } \\
&=0.155 \mathrm{moles}
\end{aligned}
$$

(v) Heat released = Mass X Specific $\quad X$ Temperature

Heat capacity change
Mass of water used $=(108.15-8) g$

$$
=100.15 \mathrm{~g}
$$

$$
\therefore \text { Heat released }=\frac{100.15}{1000} \times 4.18 \times 14 \mathrm{kj}
$$

$$
=100.15 \mathrm{kj}
$$

0.155 moles NaOH

1 mole NaOH
1×5.861 kj mole ${ }^{-1}$ 0.155 $=-37.8 \mathrm{kjmol}^{-1}$
(b) i) ΔH_{3} and ΔH_{4}
ii) Condensation
iii) $\Delta H=\Delta H_{1}+\Delta H_{2}+\Delta H_{3}+\Delta H_{4}$
iv) Exothermic.
16. I-a-Latent heat of fusion is the heat change that occurs when one mole of a solid substance changes into liquid at constant temperature.

- Latent heat of vapourization is the heat change that occurs when one mole of liquid
substance changes into gas at constant temperature.
$b-B C$ - The liquid loses heat as it cools hence decrease in kinetic energy of the particles
- CD - The liquid changes to solid as temperature remains constant at freezing point.
II. (i) Scale - *TZM*

Plot-*TZM*
Line
(ii) Should be shown on the graph - if not shown penalize ($1 / 2 \mathrm{mk}$)
(iii) Heat change $=\boldsymbol{m} x \operatorname{cx} \Delta T$

Where $m=\left(v o l\right.$. of acid $\left(20 \mathrm{~cm}^{3}\right)+$ volume of bas in (b) above) $x 1 \mathrm{~g} / \mathrm{cm}^{3}$
ΔT-as read form the graph
(iv) moles of acid

Moles of base $=\frac{0.5 x \text { volume }}{1000}$ in (b) above
Mole ratio acid: Base $=1: 1$
Moles of acid heat change in (iii)above lmole ?
Molar heat change $=\frac{1 x \text { heat in (iii) }}{\text { Moles of acid }}$
17. $Q=40000 \times 60 \times 60=144000000 c$

$$
\begin{aligned}
\text { Mass of } A l= & \frac{144000000 \times 27}{3 \times 96500} \checkmark 1 \\
& =13.43 \mathrm{~kg} \quad \checkmark 1
\end{aligned}
$$

18. (a) (i) Contains methane which is a fuel or contains methane which can burn
(ii) Pass a known volume of biogas through Sodium hydroxide (Potassium hydroxide) solution to absorb Carbon (IV) Oxide. Measure the volume of remaining gas

$$
\%=\frac{\text { Volume of methane }}{\text { Volume of Biogas }} \times 100
$$

19. a) No effect - Reaction is not accompanied by volume changes/similar volumes of reactants and products
20. a) - carbon IV Oxide;

- Sulphur IV Oxide;
- Lead;
(b) Availed low sulphur diesel/ availed unleaded petrol

21. (a) Heat change that occurs when one mole of hydrogen combines with one mole of hydroxide ions. //Heat evolved when one mole of water s formed during reaction of H^{+}and OH^{-}ions
(b) HCl produces a higher temperature rise than oxalic acid;

HCl is a stronger acid than oxalic acid;
22. $\mathrm{H}_{2} \mathrm{O}_{(l)} \quad \Delta \mathrm{H}_{2} \quad \mathrm{H}_{2} \mathrm{O}_{(g)}$

$$
\begin{gathered}
\Delta H_{2}=-\Delta H_{1} \forall \Delta H_{3} \\
=\Delta H_{3}-\Delta H_{1 / 2} \\
=-242-286
\end{gathered}
$$

$=-242+286$
$=+44 \mathrm{KJ} / \mathrm{mol} \checkmark 1 \quad$ (No units of sign $=1 / 2 \mathrm{mk})$
23. (a) Chemical substance that burns to produce useful amount of heat.
(b) (i) Its cheap
(ii) Its readily available (1/2mk)
(iii) It burns slowly (1/2mk)
(iv) Does not produce poisonous gas. $\quad(1 / 2 m k)$
24. a) Metallic beaker would make most of the heat be lost to the environment
b) - Thermometer reading increased

- The reaction is exothermic

25. a) A substance that produce heat energy when burnt
b) 1. Availability
26. ease of transport
27. a) 1 mole Fe (56) required \qquad $15.4+354$ $=396.5 \mathrm{Kj}$
10,000 (10 kg) ?
$\frac{10,000 \mathrm{~g}}{56 \mathrm{~g}} \times 369.5 \mathrm{Kj}$
b) $\begin{aligned} & =6596.285 K j \\ \frac{-68 K j}{2} & =-34 K j \quad \sqrt{1 / 2}\end{aligned}$
a) $\Delta H_{1}-$ Lattice energy $\checkmark 1$
$\Delta H_{2}-H y d r o g e n ~ e n e r g y ~ \checkmark 1$
b) $\Delta H_{3}=\Delta H_{2}+\Delta H_{1} \quad \checkmark 1$
