Electrochemistry

- 7. Aluminium has a higher electrical conductivity than sodium. $\sqrt{4}$ Aluminium has three delocalized $\sqrt{2^{1/2}}$ electrons in its metallic structure while sodium has only one delocalized electron in its structure. $\sqrt{2^{1/2}}$
- 8. $Q = It \sqrt{2}$ = 3 x 50 x 60 $\sqrt{2}$ = 9000 C $\sqrt{2}$ 1 mole of Zn is liberated by a charge of 2 f. i.e 96500 x 2 x 65g of Zn 9000C ?

$$= \frac{65 \times 9000}{96500 \times 2} \sqrt[n]{} = 12.124g Zn \sqrt{2}$$

9. a) Q is sulphur (IV) oxide $SO_2(g)$. $\sqrt{}$

b)

- Impure copper is the while pure copper is cathode. During electrolysis impure copper is purified and pure copper deposited on the cathode as shown in the half electrode reaction below; <u>CATHODE EQUATION:</u>

 $Cu^{2+} + 2e$ $Cu(s) \sqrt{2}$

- The cathode is therefore removed and replaced after an interval.

10. a) i) the yield of NH₃ would be lowered √½ any supply of heat makes NH₃ to decompose to N₂ and H₂
ii) the yield of NH₃ would be increased
b) a catalyst accelerate the rates of both forward and reverse reactions equally √½. Equilibrium position is not affected by a catalyst √½

c)

12. Mass of due to $C = \frac{12}{44} \times 4.2 = 1.145 \sqrt{\frac{1}{2}}$ Mass of due to $H = \frac{2}{18} \times 1.71 = 1.889 \sqrt{\frac{1}{2}}$

Moles of $C = \frac{1.145}{12} = 0.095\sqrt{\frac{1}{2}}$ Moles of $H = \frac{0.1889}{1} = 0.1889\sqrt{\frac{1}{2}}$ Moles ratio c: r $0.095: 0.1889\sqrt{\frac{1}{2}}$ 1: 2E.F = $CH_2\sqrt{\frac{1}{2}}$ (accept alternative method)

13. 96,500 coulombs 1 faraday 144,750 ,, ? 144.750 faradav√½

Copper (II) ions = 2 faradays (penalize $\frac{1}{2}$ mk for missing/wrong units) 2 faradays yield = 64g of copper 1.5 faradays yield = ? = $\frac{1.5}{2} \times 64g\sqrt{\frac{1}{2}}$ =48g of copper was obtained $\sqrt{\frac{1}{2}}$

- 14. Physical difference:- $Na_2O_2 - yellow$ while Na_2O is white Chemical difference:- N_2O_2 reacts with water to form NaOH and O_2 while $\checkmark 1$ Na_2O reacts with water to form NaOH only $\checkmark 1$
- 15. (a) Pb(NO₃)₂ (b)

(c) $Mg_{(s)}/Mg^{2+}_{(aq)}//Pb^{2+}_{(aq)}/Pb_{(s)}$

16. (a) MnO_4 is reduced; Oxidation number of Mn is reduced from +7 to +2 (b) $5Fe^{2+}_{(g)}$ $5Fe^{3+}_{(aq)} + 5e_{-};$

- 17. i) $2 Cr_{(S)}$ $2Cr^{3+}_{(aq)} + 6e$ $3Fe^{2+}_{(aq)} + 6e$ $3Fe_{(g)}$ $2Cr_{(g)} + 3Fe^{2+}_{(aq)}$ $2Cr^{3+}_{(aq)} + 3Fe_{(g)} \sqrt{}$ ii) $0.30 = -0.44 - E_{R}$
 - $E_{R} = -0.44 0.30$ = -0.74V $\sqrt{}$
- 18. (a) Filtration of air/electrostatic precipitation/purification

 Passing through sodium hydroxide/potassium hydroxide to absorb Carbon (IV) oxide gas
 Cool to remove water vapour as ice
 -Cool remaining <u>air to liquid</u> by repeated compression and expansion of liquid air
 Fractional distillation of liquid air- Nitrogen collected at -196°C1
 - (b) (i) Nitrogen (II) Oxide

(ii)

$$NH_{3(g)} + CuO_{(s)} N_{2(g)} + H_2O_{(l)} + Cu_{(s)}$$

OR - Oxidation number of N_2 in NH_3 increases from -3 to 0. Oxidation number of reducing agent increases or oxidation number of Cu in CuO decreases from +2 to 0 hence is a reducing agent

(iii) $NH_4NO_3 N_2O + 2H_2O$ (iv) Fertilizer/expose (c) (i) G or G (ii) $E^{2+}_{(aq)} + 2OH^{-}_{(aq)} = E(OH)_{2(s)}$

19. a) i)
$$G//G_{2(g)}$$
 Not G^-
It has the highest potential OR highest reduction potential $\sqrt{1}$ mark
ii) G and N or $G_{2(g)} //N_{(g)} \sqrt{1}$ mark

20. a) (i) Cathode – steel

iii)

Anode – Carbon / graphite

(ii) To lower the melting P^+ hence reducing cost of heating the salt.

Na_(l)

- (iii) To prevent the two products from recombining.
- (iv) Cathode

$$Na^+_{(l)} + e^-$$

2
$$Cl_{(l)}$$
 $Cl_{(g)} + 2 e$ -
(v) less dense than electrolyte/ has low density

b) (i) quantity =
$$6.42 \times 10\ 60 = 3852$$

(ii) $3852c$ province 2.74
 $2X\ 96000 \stackrel{.}{-} \frac{(2\ X\ 96000)\ X\ 2.74}{3852}$
= 136.58

21. .a) i)
$$H^+_{(aq)} + e^- \frac{1}{2} H_2$$

ii) E cell = 0.76 + 0.54 = +1.3 volts

iii) I.
$$Fe^{3+}$$

II. Zn
IV. Fe^{3+} ion
2 $Fe^{3+} + 2e^{-}$
2 I $I_{2g}^{2} + 2e E^{0} = -0.54$

 $2 F e_{(aq)}^{3+} + 2 I_{(aq)}^{-} \qquad 2 F e_{(aq)}^{2+} + I_2 E^{0} = + 0.23$

- 22. a) i) Chlorine Has a higher reduction potential ii) +1.36 2.36 = +3.72
 - b) i) P and S ii) iii) +1.50 - 0.44 + + 1.94

c)
$$Q = 4 X a6 X 60 = 3840C$$

1.17g ______ 3840
59 g ______ 59 X 3840 = 192981.261 C
1.174
If 96,500c ______ IF
192891.261 _____ 192981.261 X 1
96500
Charge of $X = +2$
Formula $X(NO_3)_2$

23. (a) B - Copper metal C - Chlorine gas D - Ammmonia gas E - Zinc (b) (i) $Cu^{2+}(aq) + 2e^{-}$ $Cu_{(s)}$ (ii) $CuSO_4 + Zn_{(s)}$ $ZNSO_4 + Cu_{(s)}$ $Cu^{2+} + Zn_{(s)}$ $Cu_{(s)} + Zn^{2+}(aq)$

(c) – Water treatment
-Manufacture of hydrochloric acid
(d) Tetra mine copper (II) ions

24. (a) (i) $E^{\theta} = 1.13V$

(ii) T_2 because it's standard electrode potential is zero. i.e. point of reference.

- (iv) E.m.f = +1.23 0.76 = 1.99 V
- (b) (i) x Oxygeny - Hydrogen
 - (ii) $4OH_{(aq)}$ $2H_2O + O_2 + 4e$

(iii) Reduction takes place at electrode Y. H⁺ ions gain electrons to form hydrogen gas.

(iv) Platinium / graphite/ Nickel because it is inert.

25. (i) $Zn^{2+}(aq) + 2OH^{-}(aq)$ $Zn(OH)_{2(s)}$

 $Zn(OH)_{2(s)} + 4NH_{3(aq)}$ $Zn(NH_3)4^{-2+}(aq) + 2OH^{-}(aq)$

(ii) The mixture consists of a soluble compound and an insoluble compound.

(iii) Evolution brown fumes of NO₂ gas

(iv) CO_3^{2-} - Because its reaction with HNO₃ produces CO_2 gas or $2H^+_{(aq)} + CO_3^2_{(aq)}H_2O_{(l)} + CO_{2(g)}$ (v) Pb^{2+} ion

(vi) Lead (ii) Carbonate

Zinc (II) Nitrate

26

A (i) Process by which an electrolyte is decomposed by passing an electric current through it. (ii) Anode – left pt rod

Cathode – right pt rod

(iii) – Blue /pale green colour fades

- P solution becomes acidic

B (i)
$$a. - D^{2+}$$

 $b. - D^{2+}$
(ii) C
 $E_{cell} = E_{ordn} - E_{ordn}$
 $= +0.34 - (-2.92) = +3.26V$
(iii) $B_{(s)}/B^{2+}_{(aq)}//D^{2+}_{(aq)}/D(_{(s)}; E = +3.26V)$

- 27 $Q = 40000 \ x \ 60 \ x \ 60 = 144000000c$ Mass of $Al = \frac{144000000 \ x \ 27}{3 \ x \ 96500} \ x \ 1$ $= 13.43kg \ \sqrt{1}$
- a) Strip of copper metal dissolved forming blue solution. √^{1/2}
 b) Copper displaces ions √^{1/2} of Q from solution since copper is more electropositive √^{1/2} than Q.

c) E.m.f of cell =
$$(0.80 - 0.34)V\sqrt{\frac{1}{2}}$$

= $0.46V\sqrt{\frac{1}{2}}$

29 (a) (i) Carbon (IV) Oxide gas evolved was lost to the atmosphere
(ii) Concentration of reactants higher between O and R Reaction rate faster
(iii) Grinding the marble chips
(iv) Calcium sulphate
(v) Plaster of Paris

(b) (i) Hydrogen ions discharged; It takes less energy than calcium ions (ii) $2CI_{(aq)}$ $Cl_{2(g)} + 2e$ (iii) $Q = 1t = 4 \times 1.60 \times 60$ (¹/₂ mk) = 14400C $2 \times 96500C = 2 \times 35.5$ (¹/₂mk) $14400C = \underline{14400 \times 2 \times 35.5}$ 2×95600 = 5.297g (¹/₂mk)

30. a) the bulb light $\sqrt{\frac{1}{2}}$

Hydrogen chloride gas ionized in water to give H^+ and $cl^-(aq)$ that are responsible for conduction of electric current $\sqrt{1}$ b)2 $H^+(aq)$ +ze⁻ $H_2(g)\sqrt{1}$

31.
$$Q = it$$
 $IF = 69500C$ $2F$ 206g of Pb
 $= 40x(5x60)$ $= \frac{1200x1}{96500}$ $F = \frac{0.01243}{2F} x 206$
 $= 0.01245$ F $= 1.280g$
b) I $K_{(s)}$ $K^{2+}_{(aq)} + 2e^{-1}$
 $Na + 2e$ $N_{(g)}$
II 1. Salt bridge
2. Complete the circuit
Balance the ions in each half cell
III
 IV E cell $= E$ Red $- E$ oxd
 $= +1.16 - (-0.17) = +1.33V$
32. (a) (i) Zinc sulphate / Zinc chloride / Zinc nitrate solution
(ii) Copper
(iii) $Zn_{(s)} + Cu^{2+}_{(aq)}$ $Zn^{2+}_{(aq)} + Cu_{(s)}$
(iv) $E = 0.34 + 0.76$
 $= 1.0V$
. (b) (i)Concentrated sodium chloride solution
(ii) $2 C\Gamma(aq)$ $Cl_{2(g)} + 2e$
 $Na^{+}(aq) + e$ $N_{(q)}$
(iii) Sodium amalgam is flown into water. It reacts forming sodium hydroxide solution

Quantity of electricity = (40,000 X 60 X 60) Coulumbus $\sqrt{\frac{1}{2}}$ mark *33*. 3 x 96,500 Coulumbus produce 27g of Al

:
$$\frac{40,000 \times 60 \times 60 \times 27}{3 \times 96,500 \times 1000}$$
 Kg $\sqrt{\frac{1}{2}}$ mark
= 13.43Kg $\sqrt{\frac{1}{2}}$ mark
Subtract $\frac{1}{2}$ mark if units missing or wrong
[Total 12 marks]

- i) Increased yield of NO/ $\sqrt{1}$ mark Equilibrium shifts to the right // favours the *34*. forward reaction// reduced pressure favours forward reaction// increased volume number of molecules
 - *ii) It will not affect the yield // remains the same* Catalyst do not affect position of Equilibrium

b) *T* i) $T_{(g)}$ and $S_{(g)}$ *c*)

- Half cell one ii) Half cell two S2+(aq)+2e S(s) $T(s) - 2e-____ T2+$ $OR: T(s) = T2 +_{(aq)} + 2e$ -
- iii) $T_{(s)}$ $T^{2+}_{(aq)} + 2e, E = +0.74V$

iv) From T(s)/T2+ half cell to S2+/S(s) half cell through conducting wires

d) i)
$$Q = It$$

= 2.5 x (15x60)
= 2250C

ii)
$$RAM = \frac{mass \ x \ valency \ x \ 96500}{Q}$$

= $\frac{0.74 \ x \ 2 \ x \ 96500}{2250}$
= $\frac{142820}{2250}$
= 63.476

36.

b) *T* i) $T_{(g)}$ and $S_{(g)}$ *c*)

a) R

Half cell one ii) Half cell two $T(s) - 2e - ___ T2 +$ OR: T(s) = T2+(aq) + 2e-

 $S2+(aq) + 2e _ S(s)$

iii) $T_{(s)}$ $T^{2+}(aq) + 2e$, E = +0.74V

iv) From T(s)/T2+ half cell to S2+/S(s) half cell through conducting wires

d) i)
$$Q = It$$

= 2.5 x (15x60)
= 2250C

ii)
$$RAM = \frac{mass \ x \ valency \ x \ 96500}{Q}$$

= $\frac{0.74 \ x \ 2 \ x \ 96500}{220}$
= $\frac{142820}{2250}$
= 63.476

37. $NH_4\sqrt{1}$, proton donor $\sqrt{2}$

38. a) - Bubbles of colourless gas at the anode $\sqrt{\frac{1}{2}}$

- Brown deposits at the cathode $\sqrt{\frac{1}{2}}$

- Blue color of the solution fades

Any 2 1/2 mark each

b) The Ph decreases

Removal of OH⁻ ions leaves an excess of H^+ hence the solution becomes more acidic $\sqrt{}$

- 39. a) Anode. Copper anode dissolves b) $Q = 0.5 \times 60 \times 64.3 = 1929C$ $0.64g \text{ of } Cu _ 1929 C$ $\therefore 63.5 \text{ of } Cu$ $63.5 \times 1929 \sqrt{\frac{1}{2}}$ 0.64 $= 191393 C \sqrt{\frac{1}{2}}$
- 40. The grey-black solid changes to purple gas iodine sublimes at low temperature due to weak Van der walls forces
- 41. (a) The mass of substance liberated during electrolysis is directly proportional to the quantity of electricity passed
 (b) Quantity of electricity = 2 x 2 x 36000 = 14400c (¹/₂mk) Volume of gas evolved = <u>14400 x 22.4</u> = 1.671dm³ 2 x 96500 (1 ¹/₂ mk)
- 42. (a) $OH^{-} \sqrt{1}$ (1 mk)

43. (i) ZnS- No mark if the letters are joined (ii) SO₂ produced as a by-product is used in contact process to obtain H₂SO₄. This acid is used in making fertilizers e.g. ammonium sulphate

/1

- 44. (i) CaO is basic and P_4O_{10} is acidic (ii) Let the ON of P be x 4x + (-2x10) = 0 $\frac{4x}{4} = \frac{+20}{4}$ x = +5(iii) Used as a fertilizer $\sqrt{1}$
- 45. Platinum electrode is used, H_2 is bubbled over the pt electrode immersed in 1M H+ i.e 1M HCl. The electrode is coated with finely –divided platinum catalyst

(½mk)		$C^{2}_{(aq)}$
M ²⁺ (aq)		
+0.76+0.34=1.0 Volts	(½mk)	

47. (a) - Red- Phosphorous

46.

- White Phosphorous
- (b) Phosphorous is insoluble in water because its non-polar while water is polar. It cannot be stored in oil because oil is non-polar it will dissolve the phosphorous.

48. (a)
$$2X_{(s)} + 3W(aq)$$
 $2X^{3+}_{(aq)} + 3W_{(s)}$
(b) $E^{\theta}(X/X^{3+}_{(aq)}) + 0.44 = 0.3V$
 $E^{\theta}(X_{(s)}/X^{3+}_{(aq)}) = +0.74V \checkmark$
 $E^{\theta}(X^{3+}_{(aq)})/X_{(s)} = -0.74V \checkmark$
 $\sqrt{\frac{1}{2}}$

Salt bridge

 $\sqrt{1/2}$

49. Electrode - E_1 is the anode Dilute electrolyte - OH⁻ ions are discharged. 4 OH⁻_(aq) 2H₂O_(e) + O_{2(g)} + 4e⁻ Oxygen gas is produced. Discharge of hydroxyl ion increases the concentration of sodium chloride. Chloride, Cl⁻ are then discharged. Chloride, Cl-, are then discharged Chloride gas is produce 2Cl⁻_(aq) Cl_{2(g)} + 2e⁻

50. a)
$$C10_3^-$$
 (=) $Cl + 3(-2) = -1(=)Cl - 6 = -1, Cl = +5$

$$C_{103^{-}(aq)}^{+5} 6H^{+}_{(aq)} + 5e^{-} C_{2(g)}^{0} + 3H_2O_{(l)}$$

b) $NO_2^{-}(=) N+2 (-2) = -1(=) N-4 = -1 (=) = N+3$

$$NO_{2} + H_{2}O_{(l)}$$
 $NO_{3(aq)} + 2H_{(aq)}^{+} + 2e^{-1}$

51.

Half Cell E^{θ}_{\prime}	7	$E^{\theta}/_{V}$ using iron ref - electrode
$Al_{(s)} / Al^{3+}_{(aq)}$	- 1.66	- 1.22
$Zw_{(s)} / Zn^{2+}_{(aq)}$	- 0.76	+0.32
Fe (s)/Fe ²⁺ (aq)	- 0.44	0.00
$Ni_{(s)} /Ni^{2+}_{(aq)}$	- 0.25	+ 0.19

52.
$$\theta = 1.5 X 60 X 15 = 1350$$

 $J^{3+}_{(aq)} + 3e$ $J_{(s)}$
 $3F = 3 X 96500 = 289 500C$
 $289500C deposit = 52g of J_{(s)}$
 $= 1350 C deposit = 1350 X 52$
 $289500 = 0.2 2425g$

53. Tin (Sn) its oxidation potential is +0.144V. It is the least likely to combine/ react with elements of weather