When a magnesium ribbon is heated in air it combines with oxygen forming magnesium oxide.
When potassium manganate (VII) is heated it decomposes giving off oxygen which escapes in air
2. $\quad \mathrm{RFM}$ of $\mathrm{NaOH}=40$

Moles of $\mathrm{NaOH}=\frac{8}{40}=0.2 \mathrm{M}_{\checkmark}$
Moles of NaOH in 25 cm 3
$\frac{25 \times 0.2}{1000}=0.005$
Mole ratio 1:2

$$
\begin{aligned}
\text { Moles of acid } & =\frac{0.005}{2} \\
& =0.0025 \\
\frac{1 \times 0.245}{0.0025} & =98
\end{aligned}
$$

3. No. Of moles of HNO_{3} acid
$\frac{50 \times 2}{1000}=0.1$ moles
Mole ratio 1:1 \checkmark
The KOH will have 0.1moles; $\frac{0.1 \times 100}{50}=0.2 \mathrm{moles}$
Then D grams is 0.2×56

$$
=11.2 \mathrm{~g}
$$

4. Number of moles of $Q=\frac{960 \mathrm{~cm}^{3} \times 1 \mathrm{~mole}}{24000 \mathrm{~cm}^{3}}$

$$
=0.04 \mathrm{moles}
$$

Equation:
$\mathrm{Na}_{2} \mathrm{SO}_{3(s)}+2 \mathrm{HCL}_{(a q)} \quad 2 \mathrm{NaCl}_{(a q)}+\mathrm{SO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
Mole ratio $\mathrm{Na}_{2} \mathrm{SO}_{3}: \mathrm{SO}_{2}$ is $1: 1$
\therefore No. of moles of $\mathrm{Na}_{2} \mathrm{SO}_{3}=0.04 \mathrm{moles}$
Mass of $\mathrm{Na}_{2} \mathrm{SO}_{3}=126 \mathrm{gmol}^{-1} x 0.04$

$$
=5.04 \mathrm{~g}
$$

5. From the equation

- (3×24) litres of chlorine react with iron to produce [(56x 2) + (35.5 X3)] g of Fecl ${ }_{3}$.

325 g of Fecl_{3} is produced by 72 litres of cl_{2}
Then 0.5 g of fecl3 is produced by:

$$
\begin{aligned}
\frac{0.5 x 72}{325} & =0.11078 \text { litres } \\
& =110.78 \mathrm{~cm}^{3}
\end{aligned}
$$

6. $R M M\left(\mathrm{CH}_{3} \mathrm{OOH}\right)=60$
$\mathrm{RMM}\left(\mathrm{CH}_{3} \mathrm{OOH}\right)=60$
Mass of $15 \mathrm{~cm}^{3}$ and $=1.05 \times 1 / 2=15.75 \mathrm{x} \quad \checkmark 1 / 2$
Moles in $500 \mathrm{~cm}^{3}$ solution $=\frac{15.75}{60}=0.2625 \checkmark 1$

$$
\text { Molarity }=\frac{1000 \times 0.2625}{5000}=0.525 M \checkmark 1 / 2
$$

7. If $24000 \mathrm{~cm}^{3}=1$ mole
$150 \mathrm{~cm}^{3}=$?

$$
\frac{150 \times 1}{24000}=0.00625 \mathrm{moles} \text { of } \mathrm{CO}_{2}
$$

Since the ratio of $\mathrm{Na}_{2} \mathrm{CO}_{3} ; \mathrm{O}_{2}$ produced is 1:1 the mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.00625 \times 106=0.6625 \mathrm{~g}$

$\mathrm{Na}_{2} \mathrm{Co} 3$	$\mathrm{H}_{2} \mathrm{O}$
Mass 0.6625g	1.0125 g
RFM 106	18
Mole $0.6625=\underline{0.00625}$	$\underline{1.0125}=$
106	0.5625
Ratio 0.00625	18
0.00625	0.05625
$=1$	0.0.00625
$\mathrm{Na}_{2} \mathrm{CO}_{3 .} .9 \mathrm{H}_{2} \mathrm{O}$	$=9$

8. $\mathrm{MgCl}_{2} \quad \mathrm{Mg}^{2+}{ }_{(s)} \mathrm{2Cl}^{-}$

$$
\begin{array}{r}
\text { R.F.M of } \underset{=95}{\mathrm{MgCl}_{2}}=24+71 \\
=24
\end{array}
$$

Moles of Mass $=\frac{1.7}{95} \quad$ R.F.M

$$
=0.01789 \mathrm{moles}
$$

I mole of $\mathrm{MgCl}_{2}=2$ moles of Cl-ions
0.01789 moles of $\mathrm{MgCl}_{2}=0.01789 \times 2$
$=0.03478 \mathrm{moles}$ of Clions
1 mole $=6.0 \times 10^{23}$ ions
0.03578 moles $=\frac{0.03578 \times 6.0 \times 10^{23}}{1}$
$=2.1468 \times 10^{22}$ ions of Cl^{-}
12. Mass of $\mathrm{O}_{2}=(4.0-2.4)=1.6 \mathrm{~g}$

Moles of $\mathrm{O}_{2}=1.6 / 16=0.1$
If $1 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2} \quad 24000 \mathrm{~cm}^{3}$

$$
0.1 \mathrm{Mol} \mathrm{Mg}=0.5 \mathrm{~mol} \mathrm{o}_{2}=1200 \mathrm{~cm}^{3}
$$

> OR

$$
\begin{array}{lcc}
2 m g \\
2(24) \\
2.4 / 2(24) \\
X=\frac{2.4 \times 24000}{2(2.4)} & =x / 20000 & 02 \\
\frac{24000}{}=1200 \mathrm{~cm} 3
\end{array}
$$

13. i) Fe

S	11.5/32	$\mathrm{H}_{2} \mathrm{O}$	
20.2/56		23.0/16	45.3/18
0.36/0.36	0.36/0.36	1.44/0.36	2.52/0.36
1	1	4	7
Empirical	mula: F	$\mathrm{H}_{2} \mathrm{O}$	

ii) $6.95 g \quad=6.95 / 278 \quad=0.025$
$\therefore 0.05$ moles in $250 \mathrm{~cm}^{3}=0.025 x^{1000} / 250=0.1$

