4.5 PHYSICS (232)

4.5.1 Physics Paper 1 (232/1)

SECTION A

1.

$$
\begin{aligned}
& L=\frac{18.6+18.5+18.6+18.5}{4} \\
& L=\frac{74.2}{4}=18.55
\end{aligned}
$$

students should record 18.6 cm
2. 3.46 mm read from photograph.
3. \quad Weight $=$ Mass x gravity

OR (kilograms is the unit of measuring the mass and does not depict the force of gravity)
4.
(a) $\mathrm{BC}=$ Constant
$\sqrt{ }(1)$
(b) CD - decreasing
$\sqrt{ }(1)$
5.

$\frac{F}{A}=p$	
F	$=5 \times 24$
F	$=120 \mathrm{~N}$

6. Volume of drop $=\quad$ Volume of patch $\sqrt{ }(1)$

Ad	$=\mathrm{V}$	$\sqrt{ }(1)$
d	$=\frac{\mathrm{V}}{\mathrm{A}}$	

7. Flask painted black absorbs more heat;

$$
\sqrt{ }(1)
$$

causing more expansion of air above S than above T; $\sqrt{ }(1)$
hence S is pushed downwards and T upwards;

$$
\sqrt{ }(1)
$$

8.

$$
\begin{align*}
50 \mathrm{x} & =20 \times 1 \tag{}\\
\mathrm{x} & =\underline{20} \\
& =0.4 \mathrm{~m} \tag{}
\end{align*}
$$

9.

-raised K to K^{\prime}
-P also raised to P^{\prime}
10. Extension $=4 \mathrm{~mm}+4 \mathrm{~mm}$

$$
\begin{equation*}
=\quad 8 \mathrm{~mm} \tag{}
\end{equation*}
$$

11. $A_{1} V_{1}=A_{2} V_{2}$

$$
\frac{V_{2}}{V_{1}}=\frac{A_{1}}{A_{2}}
$$

12.

13.
(a) BC - Solid changes to liquid
(b) $\mathrm{DE} \quad-\quad$ Liquid changes to vapour
14. - Collisions / bombardment of particles $\sqrt{ }(1)$ with air molecules which are in random motion.

SECTION B

15. (a)
(i) \quad Displacement $=\quad$ Area under graph

$$
\begin{aligned}
& =\quad 20 \times 8 \mathrm{~m} \\
& =\quad 160 \mathrm{~m}
\end{aligned}
$$

(ii) After point B,

$$
\begin{aligned}
& a=\frac{0-20}{4} \mathrm{~ms}^{-2} \\
& =-5 \mathrm{~ms}^{-2}
\end{aligned}
$$

(iii) $\mathrm{F}=\mathrm{ma}=2 \times-5 \mathrm{~N}$

$$
=\quad-10 \mathrm{~N}
$$

(b)

16. (a) (i) Force $=4 \mathrm{~N} \quad \sqrt{ }(1)$
(ii) Since velocity is constant. (uniform speed) $\sqrt{ }(1)$

Resultant force is zero $=$ Force downwards is equal to force upwards

$$
=\quad 4 \mathrm{~N} \quad \sqrt{ }(1)
$$

(b) (i) M.A $=\frac{\text { load }}{\text { Effort }}=\frac{20}{4}$
$\sqrt{ }(1)$
$\sqrt{ }(1)$
$\sqrt{ }(1)$
(ii) V.R $=\frac{\text { Effort dis } \tan c e}{\text { Load dis } \tan c e}$;

$$
\sqrt{ }(1)
$$

$=\frac{40}{5} ;$
$=8$;
(iii) Efficiency $=\frac{M \cdot A}{V \cdot R} \times 100 \%$ $\sqrt{ }(1)$
$=\frac{5}{8} \times 100$ $\sqrt{ }(1)$
$=62.5 \%$
17. (a) $l_{1}=142, \quad T_{1}=290 \mathrm{~K}, \quad T_{2}=298 \mathrm{~K}, l_{2}=$?

$$
\begin{align*}
& \frac{l_{1}}{T_{1}}=\frac{l_{2}}{T_{2}} \text { or } \frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \tag{}\\
& l_{2}=142 \times \frac{298}{290} \tag{}\\
& =\quad 145.9 \mathrm{~mm}
\end{align*}
$$

$\sqrt{ }(1)$
(b) In the hot sun the temperature of the air increases; therefore the speed of the air

$$
\sqrt{ }(1)
$$

molecules increases hence the rate of collisions between the molecules and $\sqrt{ }(1)$ tyre increases; The rate of change of momentum (pressure) $\sqrt{ }(1)$ of the molecules also increases.
(c)

(ii) - All the heat lost by the steam is not absorbed by the water alone.

- Reading the thermometer at wrong meniscus resulting in wrong temperatures.

18. (a) Friction between road and tyre.
(b) Increases the centripetal force acting on the bus.
$\sqrt{ }(1)$
$\sqrt{ }(1)$
(c) (i) - Weight

- Tension
$\sqrt{ }(1)$
$\sqrt{ }(1)$
(ii) (I) $\mathrm{f}=2$ revolutions $/ \mathrm{sec}$

$$
\begin{array}{rlrl}
\mathrm{T} & =\frac{2 \pi}{\omega} \quad=\quad \frac{1}{f} & \sqrt{ }(1) \\
\mathrm{f} & =\frac{\omega}{2 \pi} \quad= & 2 & \sqrt{ }(1) \\
\omega & =2 \times 2 \pi \\
& =4 \pi \mathrm{radS}^{-1} & = & \\
& \simeq 13 \mathrm{radS}^{-1} & & \sqrt{ }(1)
\end{array}
$$

(II) $\quad \mathrm{T}+\mathrm{mg}=\mathrm{mr} \omega^{2}$

$$
\mathrm{T}=\mathrm{mr} \omega^{2}-\mathrm{mg}
$$

$$
=0.2 \times 0.4\left(16 \pi^{2}\right)-0.2 \times 10 \quad \sqrt{ }(1)
$$

$$
=10.63
$$

$$
=10.6 \mathrm{~N}
$$

19.

4.5.2 Physics Paper 2 (232/2)

1. (a)

(b) Focal length $=10 \mathrm{~cm}$.
2. The capacitance increases.
3.

Approximately equally spaced lines $\sqrt{ } 1$
4.
(a) $\quad V=f \lambda \sqrt{ }$

$$
\lambda=\frac{3.0 \times 10^{8}}{4 \times 10^{6}} \sqrt{ }
$$

5.

$\checkmark \quad$-correct winding
6. (a) Electrons arbsorb enough energy and are ejected $\sqrt{ }$ leaving the electroscope positively charged $\sqrt{ }$ the leaf is repelled by the stem. $\sqrt{ }$
7.

Correct polarity on each magnet
8.

1 mark for correct bias
1 mark for both ammeter and voltmeter
1 mark for means of varying the p.d. across the diode.
9. ${ }_{88}^{226} \mathrm{Ra} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{y}^{x} Q$
(a) $4+x=226$ $x=222 \sqrt{ }$
(b) $2+y=88$
$y=86 \sqrt{ }$
10. - estimate the quantity of charge $\sqrt{ } 1$

- test for insulating properties $\sqrt{ } 1$
- test for the sign of charge $\sqrt{ } 1$
- test for presence of charge $\sqrt{ } 1$

11. It stops the fast moving electrons $\sqrt{ }$ whose kinetic energy is converted to heat.
12.

1 mark for ray incident on hypotenuse
1 mark for showing two internal reflections
13. $Q=1 t \quad 1$ mark for either formula
$n=\frac{Q}{e} \int$
$=\frac{2.0 \times 10^{-4} \times 1}{1.6 \times 10^{-19}} \quad 1$ mark for substitution
$=1.25 \times 10^{15}$ electrons 1 mark for answer

SECTION B

14. (a) (i) I $\mathrm{D} \quad-\quad$ soft iron armature $\sqrt{ } \quad 1$
$\begin{array}{llllll}\text { II } & \text { E } & \text { contacts } & \sqrt{ } & 1\end{array}$
(ii) I. Soft iron core is magnetised $\sqrt{ }$ and 1 attracts the armature $\sqrt{ }$ the hammer hits $\quad 1$ the gong.
II. Contact is broken $\sqrt{ }$ when armature is 1
attracted by the core. The core then loses magnetism. $\sqrt{ }$ 1
The armature loses magnetism and $\sqrt{ }$ springs back making contact again and the process is repeated.
(b) (i) $\quad I=\frac{P}{V} \sqrt{ } \quad 1$
$=\frac{60}{240} \sqrt{ }$
1
$=0.25 \mathrm{~A} \sqrt{ }$
1
(ii) $R=\frac{V}{I} \quad \sqrt{ } \quad 1$
$R=\frac{240 \times 240}{60} \quad \sqrt{ }$ OR $\frac{240}{0.25} \quad 1$
$R=960 \Omega \quad \sqrt{ } \quad 1$
15. (a) (i) resistance in the coils. $\sqrt{ }$
(ii) use of thicker copper wires. $\sqrt{ }$
(b) (i) $\frac{N_{p}}{N_{s}}=\frac{V_{p}}{V_{s}}$

$$
=\frac{240}{12}
$$

$$
\sqrt{ }
$$

$$
=\frac{20}{1} \quad \sqrt{ }
$$

(ii) Power input $=V_{p} I_{p}$

$$
\begin{array}{ll}
=240 \times 0.36 \\
=86.4 \mathrm{~W}
\end{array}
$$

(iii) Power output $=80 \mathrm{~W} \sqrt{ }$
(iv) Efficiency $\frac{\text { power output }}{\text { power input }} \sqrt{ }$

$$
\begin{aligned}
& =\frac{80}{86.4} \\
& =92.59 \%
\end{aligned}
$$

$\sqrt{ }$
16. (a) (i) (I) $\quad I_{1}=\frac{V}{R_{1}}$ $\sqrt{ }$
(II) $\quad I_{2}=\frac{V}{R_{2}}$
$\sqrt{ }$
1
(III) $\quad I_{T}=I_{1}+I_{2}$

$$
\begin{equation*}
I_{T}=\frac{V}{R_{1}}+\frac{V}{R_{2}} \tag{}
\end{equation*}
$$

(iii) $\quad I_{T}=\frac{V}{R_{T}}$
$\frac{V}{R_{T}}=\frac{V}{R_{1}}+\frac{V}{R_{2}} \quad \checkmark$
divide through by V
$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$, hence $R_{T}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
(b) (i)

\checkmark - concentration of positive charges at sharp end
$\checkmark \quad+v e \&-v e$ charges in correct position
(ii) (I) The conductor loses the negative charges to earth.
(II) The conductor acquires a net $\sqrt{ }$ positive charge/which redistributes itself.
(iii)

$\checkmark \quad+$ ve charges uniformly distributed
17. (a) (i) (I) sound is soft when the waves arrive out of phase; $\sqrt{ }$ such waves undergo destructive interference.
(ii) same sound - loud.

Along PQ the waves undergo
(b) (i)

\checkmark-any correct d
(ii)

$\sqrt{ }$
(iii) As the longitudinal waves pass $\sqrt{ }$ molecule R moves along to either side. 1 For a crest, R moves away from source.
18.

(II) magnification $=\frac{\text { Image distance }}{\text { Object distance }} \quad \sqrt{ }$ $=\frac{20}{10} \quad \sqrt{ }$ $=2 \pm 0.2 \quad \sqrt{ }$

1

1
1

1
(iii) Infinity.

- Outer pair of rays $\sqrt{ }$
- Inner pair of rays $\sqrt{ }$
- proper labelling of umbra and penumbra $\sqrt{ }$

4.5.3 Physics Paper 3 (232/3)

QUESTION ONE PART A

(a) (i) $\mathrm{D}=0.38 \mathrm{~mm} \pm 0.02$
(ii) $\mathrm{d}=0.28 \mathrm{~mm} \pm 0.05$
(b) $\quad C_{1}=\frac{D}{d}=\frac{0.38}{0.28}=1.357$
(c) $\quad l_{1}=38.5 \mathrm{~cm}$
$l_{2}=61.5 \mathrm{~cm}$
$\left(l_{1}<l_{2}\right)$
$\frac{R_{p}}{9}=\frac{38.5}{61.5}$
$\therefore R_{p}=5.63 \Omega$
$C_{2}=\sqrt{\frac{9}{5.63}}$
$=\quad 1.264$
(ii) $\quad \mathrm{C}_{1}$ and C_{2} are nearly equal (to the nearest whole number).

QUESTION ONE PART B

$\mathrm{V}=3.1$ volts ± 0.1
$I_{0}=\frac{V}{R}=\frac{3.1}{4.7 \times 10^{3}} \quad A$

$$
\begin{equation*}
=\quad 0.659 \mathrm{~mA} \tag{3marks}
\end{equation*}
$$

$\mathrm{I}_{1}=0.63 \mathrm{~mA}$

For $\quad \frac{I_{1}}{2}$
$\mathrm{t}_{1}=3.9 \mathrm{~s}$
For $\quad \frac{I_{1}}{10}$
$\mathrm{t}_{2}=13.5 \mathrm{~s}$

\mathbf{I}	0.5	0.25	0.05
\mathbf{t}	0	3.6	12.5

(3 marks)

QUESTION TWO

(d)

$l(\mathrm{~cm})$	5	10	15	20	25	30
$\mathrm{t}(\mathrm{s})$	20.1	26.3	31.2	33.0	39.6	43.4
$\mathrm{~T}(\mathrm{~s})$	2.01	2.63	3.12	3.3	3.96	4.34
$\mathrm{~T}^{2}\left(\mathrm{~S}^{2}\right)$	4.04	6.92	9.73	10.89	15.68	19.84

(e) Graph.
(6 marks)
(5 marks)

(f) Gradient $=\frac{20}{16} \mathrm{~cm} / \mathrm{s}^{2}$
$=\frac{0.20}{16} \mathrm{~cm} / \mathrm{s}^{2}$
$=0.015625 \mathrm{~ms}^{-2}$
(g) $l_{\mathrm{N}}=20 \mathrm{~cm}=0.2 \mathrm{~m}$
(i) $\quad \mathrm{t}_{\mathrm{N}}=52.0$
(ii) $\mathrm{T}_{\mathrm{N}}=5.2$
(iii) $\mathrm{T}_{\mathrm{N}}{ }^{2}=27.04$
$\mathrm{H}=\frac{0.2}{27.04}=0.007396$
(iv) $\quad \frac{H}{S}=\frac{0.007396}{0.015625}$

$$
=\quad 0.4737
$$

