1. Vectors

1. Given that $4 p-3 q=\binom{10}{5}$ and $p+2 q=\binom{-14}{15}$ find
a) (i) p and q
(3 mks)
(ii) $|p+2 q|$
(3 mks)
(b) Show that A $(1,-1), B(3,5)$ and $C(5,11)$ are collinear
2. Given the column vectors $\mathbf{a}=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right) \mathbf{b}=\left(\begin{array}{c}6 \\ -3 \\ 9\end{array}\right) \mathbf{c}=\left(\begin{array}{c}-3 \\ 2 \\ 3\end{array}\right)$ and that $\mathbf{p}=2 \mathbf{a}-\frac{1}{3} \mathbf{b}+\mathbf{c}$
(c) (i) Express \mathbf{p} as a column vector
(d) (ii) Determine the magnitude of \mathbf{p}
3. Given the points $\mathrm{P}(-6,-3), \mathrm{Q}(-2,-1)$ and $\mathrm{R}(6,3)$ express PQ and QR as column vectors. Hence show that the points P, Q and R are collinear.
4. The position vectors of points x and y are $x=2 i+j-3 k$ and $y=3 i+2 j-2 k$ respectively. Find x y as a column vector
5. Given that $\underset{\sim}{\mathbf{a}}=\binom{1}{2}, \underset{\sim}{\mathbf{b}}=\binom{-4}{5}, \underset{\sim}{\mathbf{c}}=\binom{3}{-2}$ and $\underset{\sim}{\mathbf{P}}=2 \underset{\sim}{\mathbf{a}}+\underset{\sim}{\mathbf{b}}-3 \underset{\sim}{\mathbf{c}} . \quad$ find $|\underset{\sim}{\mathbf{p}}|$
6. The position vectors of A and B are $\left[\begin{array}{l}2 \\ 5\end{array}\right]$ and $\left[\begin{array}{c}8 \\ -7\end{array}\right]$ respectively. Find the coordinates of M which divides AB in the ratio 1:2.
7. The diagram shows the graph of vectors $E F, F G$ and $G H$.

Find the column vectors;
(a) EH
(b) $|E H|$
8. $\quad O \underset{\sim}{A}=2 \underset{\sim}{i}-4 \underset{\sim}{k}$ and $O \underset{\sim}{B}=-2 \underset{\sim}{i}+j-k$. Find $|\underset{\sim}{\mathrm{AB}}|$
9. Show that $\mathrm{P}(4,0-4), \mathrm{Q}(8,2,-1)$ and $\mathrm{R}(24,10,11)$ are collinear. (3 mks)
10. Given that $\underset{\sim}{\mathbf{P}}=2 \mathrm{i}-\mathrm{j}+\mathrm{k}$ and $\mathrm{q}=\mathrm{i}+\mathrm{j}+2 \mathrm{k}$, determine
a. $|p+q|$ (1 mk)
(b) $|1 / 2 p-2 q|$ (2 mks)
11. Express in surds form and rationalize the denominator.
$\frac{1}{\operatorname{Sin} 60^{\circ} \operatorname{Sin} 45^{\circ}-\operatorname{Sin} 45^{\circ}}$
12. If $\overrightarrow{O A}=12 \underset{\sim}{i}+8{\underset{\sim}{\sim}}^{j}$ and $\overrightarrow{O B}=16 \underset{\sim}{i}+4 \underset{\sim}{j}$. Find the coordinates of the point which divides $\overrightarrow{\mathbf{A B}}$ internally in the ratio $1: 3$
13. Find scalars \mathbf{m} and \mathbf{n} such that
$\mathbf{m}\binom{4}{3}+\mathbf{n}\left(\begin{array}{c}-3 \\ 2\end{array}\right]=\left[\begin{array}{r}5 \\ 8\end{array}\right)$
14. In a triangle OAB, M and N are points on OA and OB respectively, such that OM : $\mathrm{MA}=2: 3$ and $\mathrm{ON}: \mathrm{NB}=2: 1$. $\mathbf{A N}$ and $\mathbf{B M}$ intersect at X . Given that $\mathrm{O} \underset{\sim}{\mathrm{A}}=\mathrm{a}$ and $\mathrm{OB} \underset{\sim}{\mathrm{B}}=\mathrm{b}$
(a) Express in terms of a and b (i) BM
(ii) AN

(b) By taking $\mathbf{B X}=\mathrm{t}$ and $\mathbf{A X}=\mathbf{h} \mathbf{A N}$, where \mathbf{t} and \mathbf{h} are scalars, express $\mathbf{O X}$ in two different ways
(c) Find the values of the scalars \mathbf{t} and \mathbf{h}
(d) Determine the ratios in which \mathbf{X} divides :-
(i) $\mathbf{B M}$
(ii) $\mathbf{A N}$
15. OABC is a parallelogram, M is the mid-point of OA and $\mathrm{AX}=\frac{2}{7} \mathrm{AC}, \mathrm{OA}=\mathrm{a}$ and $\mathrm{OC}=\mathrm{c}$

(a) Express the following in terms of a and c
(i) MA
(ii) AB
(iii) AC
(iv) AX
(b) Using triangle MAX, express MX in terms of a and c
(c)The co-ordinates of A and B are $(1,6,8)$ and $(3,0,4)$ respectively. If O is the origin and P the midpoint of AB . Find;
(i) Length of OP
(ii) How far are the midpoints of OA and OB ?
16. a) If $A, B \& C$ are the points $(2,-4),(4,0)$ and $(1,6)$ respectively, use the vector method to find the coordinates of point D given that ABCD is a parallelogram.
b) The position vectors of points P and Q are \mathbf{p} and \mathbf{q} respectively. R is another point with position vector $r=3 / 2 q \quad-1 / 2 \mathrm{p}$. Express in terms of P and q
(i) PR
(ii) $P Q$, hence show that $P, Q \& R$ are collinear.
(iii) Determine the ratio $\mathrm{PQ}: \mathrm{QR}$
17. The figure shows a triangle of vectors in which $\mathrm{OS}: \mathrm{SP}=1: 3, \mathrm{PR}: \mathrm{RQ}=2: 1$ and T is the midpoint of OR

a) Given that $\mathrm{OP}=\mathrm{p}$ and $\mathrm{OQ}=\mathrm{q}$, express the following vectors in terms of P and q
i) OR
ii) QT
b) Express TS in terms of \mathbf{p} and \mathbf{q} and hence show that the points \mathbf{Q}, \mathbf{T} and \mathbf{S} are collinear
c) M is a point on OQ such that $\mathrm{OM}=\mathrm{KOQ}$ and PTM is a straight line. Given that

PT: $\mathrm{TM}=5: 1$, find the value of \mathbf{k}
18. Given that $\mathrm{a}=, \quad \mathrm{b}=\quad$ and $\mathrm{c}=\quad$ and that $\mathrm{p}=3 \mathrm{q}-1 / 2 \mathrm{~b}+1 / 10 \mathrm{c}$

Express \mathbf{p} as a column vector and hence calculate its magnitude $/ \mathrm{P} /$ correct to two decimal places
19. In a triangle OAB, M and N are points on OA and OB respectively, such that $\mathrm{OM}: \mathrm{MA}=2: 3$ and $\mathrm{ON}: \mathrm{NB}=2: 1$. AN and BM intersect at X . Given that $\mathrm{OA}_{\sim}^{\sim}=\mathbf{a}$ and $\mathrm{O} \underset{\sim}{\mathrm{B}}=\mathbf{b}$
(a) Express in terms of $\mathbf{a} \underset{\sim}{\text { and }} \mathbf{b}$:-
(i) $\underset{\sim}{\mathrm{B}}$
(ii) ${ }_{\sim}^{A} N$
(b) Taking $B X \underset{\sim}{\sim}=\mathrm{kBM}$ and $A X_{\sim}^{\sim}=\mathrm{hAN}$ where \mathbf{k} and \mathbf{h} are constants express OX in terms of
(i) $\mathbf{a}_{\sim}, \mathbf{b}_{\sim}$ and $\underset{\sim}{\mathbf{k}}$ only
(ii) $\tilde{\mathbf{a}}, \tilde{\mathbf{b}_{2}}$ and $\tilde{\sim}$ only
(c) Use the expressions in (b) above to find values of \mathbf{k} and \mathbf{h}
20. In the figure below OAB is a triangle in which M divides OA in the ratio 2:3 and N divides $O B$ in the ratio $4: 1$. AN and BM intersects at X
(a) Given that $\mathrm{OA}=\underset{\sim}{\mathrm{a}}$ and $\mathrm{OB}=\underset{\sim}{\mathrm{b}}$, express in terms of $\underset{\sim}{\mathrm{a}}$ and $\underset{\sim}{\mathrm{b}}$
(i) AN
(ii) BM
(iii) AB
(b) If $\underset{\sim}{A X}=s \underset{\sim}{\widetilde{A}} N$ and $B X=t \underset{\sim}{B} M$, where s and t are constants, write two expressions for $\tilde{O X}$ in $\tilde{\text { terms }}$ of $\tilde{\mathbf{a}}, \mathbf{b}, \tilde{\mathbf{s}}$ and \mathbf{t}. Find the value of \mathbf{s} and \mathbf{t} hence write OX in terms of \mathbf{a} and \mathbf{b}
21. A student traveling abroad for further studies sets a side Kshs. 115800 to be converted into US dollars through a bank at the rate of 76.84 per dollar. The bank charges a commission of $21 / 2 \%$ of the amount exchanged. If he plans to purchase text books and stationery worth US\$270, how much money, to the nearest dollar, will he be left with?
22. Given that:- $\mathrm{r}=5 \mathrm{i}-2 \mathrm{j}$ and $\mathrm{m}=-2 \mathrm{i}+6 \mathrm{j}-\mathrm{k}$ are the position vectors for R and M respectively. Find the Yength ofvectơ RM ${ }^{\sim} \sim \sim$
23. OABC is a trapezium in which $\mathrm{OA}=\mathrm{a}$ and $\mathrm{AB}=\mathrm{b} . \mathrm{AB}$ is parallel to OC with $2 \mathrm{AB}=\mathrm{OC}$.

T is a point on OC prodưed so that $O C$: $\mathrm{Cl}^{〔} \bumpeq 2: 1$. At and BC intersect at X so that $\mathrm{BX}=$ hBC and $\mathrm{AX}=\mathrm{KAT}$

(a) Express the following in terms of a and b:-
(i) OB
(ii) BC
(b) Express $\mathbf{C X}$ in terms of a, b and h
(c) Express $\mathbf{C X}$ in terms of a, b and k
(d) Hence calculate the values of h and \mathbf{k}
24. Given that $\mathbf{a}=\mathbf{2 i}+\mathbf{j}-\mathbf{2 k}$ and $\mathbf{b}=\mathbf{- 3 i}+\mathbf{4} \mathbf{j}-\mathbf{k}$ find :-
$|a+b|$.
25. In the figure below, \mathbf{E} is the mid-point of $\mathbf{B C} . \mathbf{A D}: \mathbf{D C}=3: 2$ and \mathbf{F} is the meeting point of

BD and AE

$$
\text { If } \mathbf{A B}=\mathbf{b} \text { and } \mathbf{A C}=\mathbf{c} ;
$$

(i) Express $\mathbf{B D}$ and $\mathbf{A E}$ in terms of $\mathbf{b} \underset{\sim}{\text { and }} \mathbf{c}$
(ii) If $\mathbf{B F}=\boldsymbol{t} \mathbf{B D}$ and $\mathbf{A F}=\boldsymbol{n} \mathbf{A E}$, find the values of \boldsymbol{t} ad \boldsymbol{n}
(iii) State the ratios in which \mathbf{F} divides $\mathbf{B D}$ and $\mathbf{A E}$
26. The coordinates of point $\mathbf{O}, \mathbf{A}, \mathbf{B}$ and \mathbf{C} are $(\mathbf{0}, \mathbf{0})(\mathbf{3}, \mathbf{4})(\mathbf{1 1}, \mathbf{6})$ and $(\mathbf{8}, \mathbf{2})$ respectively. A point \mathbf{P} is such that the vector $\mathbf{O P}, \mathbf{B A}, \mathbf{B C}$ satisfy the vector equation $\mathbf{O P}=\mathbf{B A}+1 / 2 \mathbf{B C}$ Find the coordinates of \mathbf{P}
27. A point Q divides AB in the ratio 7:2. Given that A is $(-3,4)$ and $\mathrm{B}(2,-1)$. Find the co-ordinates of Q

