1. Vectors 2

1. In the figure below E is the mid point of $\mathrm{BC} . \mathrm{AD}: \mathrm{DC}=3: 2$ and F is the meeting point of BD and AE

If $\mathrm{AB}=\underset{\sim}{b}$ and $\mathrm{AC}=\underset{\sim}{c}$
(a) Express the following in terms of b and c
(i) BD
(ii) AE
(b) If $\mathrm{BF}=\mathrm{tBD}$ and $\mathrm{AF}=\mathrm{nAE}$ find the value of t and n .
(c) State the ratio of BD to BF .
2. In the figure below $\mathrm{OA}=\mathrm{a}$ and $\mathrm{OB}=\mathrm{b}$. Points P and T divide $\overline{O B}$ and $\overline{A B}$ internally in the ration 2:3 and 1:3 respectively. Lines $\overline{O T}$ and $\overline{A P}$ meet at Q .

Find in terms of $\underset{\sim}{a}$ and $\underset{\sim}{b}$
(i) $\quad O T$
(3mks)
(ii) $O P$
(iii) $A P$
(iv) $O Q$

If $\mathrm{OQ}=\mathrm{kOT}$ and $\mathrm{AQ}=\mathrm{hAP}$ where k and h are constants express OQ in two different ways and hence find the values of h and k.
3. In the figure below $O A=a, O B=b$ and DB is parallel to $\mathrm{OA} . \mathrm{C}$ is on AB extended such that $\mathrm{AB}: \mathrm{BC}=2: 1$ and that $\mathrm{OA}=3 \mathrm{DB}$.

a) Express the vector BC in terms of \mathbf{a} and \mathbf{b}.
b) Show by vector methods that the points O, D and C are collinear.
4. In the figure below $\overrightarrow{O P}=\frac{1}{2} \underset{\sim}{a}+\underset{\sim}{b}, \overrightarrow{O R}=\frac{7}{2} \underset{\sim}{a} \underset{\sim}{b} \underset{\sim}{b} \overrightarrow{R Q}=\frac{3}{2} k \underset{\sim}{b}+\frac{1}{2} m \underset{\sim}{a}$, where k and m are scalars \quad 2PS $=3$ SR .

(a) Express as simply as possible in terms of $\underset{\sim}{a}$ and $\underset{\sim}{b}$ each of the following vectors.
(i) $\overrightarrow{P R}$
(ii) $\overrightarrow{P S}$
(iii) $\overrightarrow{O S}$
(b) Express $\overrightarrow{O Q}$ in terms of $\mathrm{a}, \mathrm{b}, \mathrm{k}$ and m .
(c) If Q lies on $\overrightarrow{O S}$ produced with $\overrightarrow{O Q} ; \overrightarrow{O S}=5: 4$, find the value of k and m .
5. In the figure below, $\mathrm{DE}=1 / 2 \mathrm{AB}$ and $\mathrm{BC}=2 / 3 \mathrm{BD}$ and the co ordinates of A, B and D are $(5,4),(9,6)$ and (12,0) respectively.

Find the vectors

(i)	BD	$(1 \mathrm{mk})$
(ii)	BC	$(1 \mathrm{mk})$
(iii)	CD	$(1 \mathrm{mk})$
(iv)	AC	$(2 \mathrm{mks})$

b) Given that $\mathrm{AC}=\mathrm{kCE}$; where k is a scalar,

Find
(i) the value of k
(4mks)
(ii) the ratio in which C divide AE .
6.

In the figure alongside $\overrightarrow{\mathrm{OA}}=\underset{\sim}{\mathrm{a}}, \overrightarrow{\mathrm{OB}}=\underset{\sim}{\mathrm{b}}$. T lies on AN such that $\mathrm{AN}: \mathrm{TN}=13: 6$. M lies on AB such that $\mathrm{AM}: \overrightarrow{\mathrm{MB}}=1: 3$ and
 (i) $A \vec{N}$
$\overrightarrow{\text { Bii) }} \overrightarrow{\mathrm{AT}}$
(iii) $\mathrm{AM} \longrightarrow$
(b) Show that O, T and M are collinear and state the ratio of OT: TM
7. A point $(-3,4)$ divides $\mathbf{A B}$ internally in the ratio 3:5. Find the coordinates of point \mathbf{A} given that point \mathbf{B} is $(6,-5)$
8. Given that O is the origin, $\mathrm{OA}=3 \mathrm{i}+2 \mathrm{j}-4 \underset{\sim}{\mathrm{k}}$ and $\mathrm{O} \underset{\sim}{B}=6 \underset{\sim}{\mathrm{i}}+11 \underset{\sim}{\mathrm{j}}+2 \underset{\sim}{2}$. If \mathbf{x} divides AB in the ratio1:2, find the modulus of OX to $2 \tilde{\mathrm{~d}} . \mathrm{p}$
9. a) Expand $(2-1 / 5 x)^{5}$
b) Hence use the expansion to find the value of $(1.96)^{5}$ correct to 3 decimal places
10. In the figure OABC is a trapezium in which $3 \mathrm{AB}=2 \mathrm{OC}$. S divides OC in the ratio $2: 1$ and AS produced meets BC produced at T^{\sim}

(a) Express AS and BC in terms of \mathbf{a} and \mathbf{c}
(b) Given further that $\mathrm{AT}=\mathrm{hAS}$ and $\mathrm{BT}=\mathrm{KBC}$ where h and k are constants
(i) Express AT in two ways in terms $\underset{\sim}{\mathrm{a}}, \underset{\sim}{\mathrm{c}}, \underset{\sim}{\mathrm{h}}$ and $\underset{\sim}{\mathrm{k}}$
(c) The obtuse angle between the lines PQ
(d) Hence find the ratio $\mathrm{BT} \underset{\sim}{\mathrm{\sim}} \mathrm{BC}$
11.

In the figure above, OPQ is a triangle in which $\mathrm{OS}=3 / 4 \mathrm{OP}$ and $\mathrm{PR}: \mathrm{RQ}=2: 1$. Lines OR and SQ meet at T.
(a) Given that $\mathrm{OP}=\mathrm{P}$ and $\mathrm{OQ}=\mathrm{q}$, express the following vectors in term of p and q
(i) PQ
(ii) OR
(iii) SQ
(b) You area further given that $\mathrm{ST}=\mathrm{m} \quad \mathrm{SQ}$ and $\mathrm{OT}=\mathrm{n}$ OR. Determine the values of m and n

