1. Trigometry 2

1. Solve the equation:

$$
\operatorname{Sin} 5 / 2 X=-1 / 2 \text { for } 0^{0} \leq X \leq 180^{\circ}
$$

2. (a) Complete the table below, leaving all your values correct to 2 d.p. for the functions y

$$
\begin{equation*}
=\cos x \text { and } y=2 \cos (x+30)^{0} \tag{2mks}
\end{equation*}
$$

X^{0}	0^{0}	60^{0}	120^{0}	180°	240^{0}	300^{0}	360^{0}	420^{0}	480^{0}	540^{0}
$\cos \mathrm{X}$	1.00			-1.00		0.50				
$2 \cos (\mathrm{x}+30)$	1.73		-1.73		0.00					

(b) For the function $\mathrm{y}=2 \cos (\mathrm{x}+30)^{0}$

State:
(i) The period
(1 mk)
(ii) Phase angle
(c) On the same axes draw the waves of the functions $y=\cos x$ and $y=2 \cos (x+30)^{0}$ for $0^{\circ} \leq x \leq 540^{\circ}$. Use the scale 1 cm rep 30° horizontally and 2 cm rep 1 unit vertically (4 mks)
(d) Use your graph above to solve the inequality $2 \cos \left(x+30^{\circ}\right) \leq \cos x \quad(2 \mathrm{mks})$
3. Find the value of x in the equation.
$\operatorname{Cos}\left(3 \mathrm{x}-180^{\circ}\right)=\frac{\sqrt{3}}{2} \quad$ in the range $\mathrm{O}^{\circ} \leq \mathrm{x} \leq 180^{\circ}$
4. Given that $\tan \theta=\frac{11}{60}$ and Θ is an acute angle, find without using tables $\cos (90-\Theta)$
5. Solve for θ if $-1 / 4 \sin (2 x+30)=0.1607,0 \leq \theta \geq 360^{\circ}$
6. Given that $\operatorname{Cos} \theta=5 / 13$ and that $270^{\circ} \leq \theta \leq 360^{\circ}$, work out the value of $\operatorname{Tan} \theta+\operatorname{Sin} \theta$ without using a calculato or mathematical tables.
7. Solve for x in the range $0^{\circ} \leq x \leq 180^{\circ}$

$$
-8 \sin ^{2} x-2 \cos x=-5
$$

8. If $\tan x^{0}={ }^{12} / 5$ and x is a reflex angle, find the value of $5 \sin x+\cos x$ without using a calculator or mathematical tables
9. Find θ given that $2 \cos 3 \theta-1=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
10. Without a mathematical table or a calculator, simplify: $\mathbf{C o s} \mathbf{3 0 0}^{\circ} \mathbf{x} \operatorname{Sin} \mathbf{1 2 0}{ }^{\mathbf{o}}$ giving your answer in $\overline{\operatorname{Cos} 330^{\circ}-\operatorname{Sin} \mathbf{4 0 5}^{\mathbf{0}}}$ rationalized surd form.
11. Express in surds form and rationalize the denominator.
$\frac{1}{\operatorname{Sin} 60^{\circ} \operatorname{Sin} 45^{\circ}-\operatorname{Sin} 45^{\circ}}$
12. Simplify the following without using tables;

Tan $45+\cos 45 \sin 60$
13. Simplify the following surds in the form of $\mathbf{a}+\sqrt{\mathbf{b}} \mathbf{c}$ where \mathbf{a}, \mathbf{b}, and \mathbf{c} are constants

$$
\frac{5}{2 \sqrt{2}-\sqrt{5}}+\frac{2}{22-\sqrt{5}}
$$

14. John cycles from shopping centre \mathbf{A} on a bearing of 120° for 5 km to shopping centre \mathbf{B}. He then cycles on a bearing of 200° for 7 km to the shopping centre \mathbf{C}. Calculate to 1 decimal place.
a) The direct distance from A to C .
b) The bearing of A from C .
c) Bearing of B from C.
