1. Surds

1. Given that $\operatorname{Tan} \theta=\frac{1}{\sqrt{5}}$ and θ is an acute angle, find without using tables or calculators,
2. Given that $\sqrt{3}=1.7321$, express in surd form, rationalize the denominator and then find the value of the expression below to 5 significant figures without using the calculator.
(3mks)

$$
\frac{2-\tan 60^{\circ}}{3-2 \cos 30^{\circ}}
$$

3. Simplify $(1+\sqrt{3})(1-\sqrt{3})$ and hence evaluate $\frac{1}{1+\sqrt{3}}$ to 3 significant figures given that $\sqrt{3}=1.7321$.
(3mks)
4. Without using mathematical tables or calculators, find the volume of a container whose base is a regular hexagon of side $\sqrt{3} \mathrm{~cm}$ and height $2 \sqrt{3} \mathrm{~cm}$
5. Simplify; $\underline{3}+\frac{1}{7}$ leaving the answer in the form $\mathbf{a}+\mathbf{b} \sqrt{\mathbf{c}}$, where \mathbf{a}, \mathbf{b} and \mathbf{c} are rational numbers $\sqrt{7}-2^{+} \underline{\sqrt{7}}$
6. Given that:- $\frac{2+\sqrt{5}}{2-\sqrt{5}}-\frac{3+\sqrt{5}}{2+\sqrt{5}}=a+b \sqrt{5}$ Find the values of \mathbf{a} and \mathbf{b} where $\mathbf{a}+\frac{1}{+} \mathbf{b}^{\mathbf{5}}$ are rational numbers
7. If:-

8. Rationalize the denominator $\frac{2-\sqrt{2}}{}$ and express your answer in the form of $\mathbf{a}+\mathbf{c} 2$

$$
(\sqrt{2}-1)^{3}
$$

9. The figure below is a right pyramid with a rectangular base ABCD and vertex V.

O is the centre of the base and M is a point on OV such that $\mathrm{OM}={ }^{1} / 3 \mathrm{OV}, \mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $V A=V B=V D=V C=15 \mathrm{~cm}$. Find;
i) The height $O V$ of the pyramid.
ii) The angle between the plane BMC and base ABCD.
10. Find the value of \mathbf{y} which satisfies the equation

$$
\log _{10} 5-2+\log _{10}(2 y+10)=\log _{10}(y-4)
$$

11. Simplify the expression $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ giving your answer in the for of $a+b \sqrt{c}$.
