1. Surds

1. Given that $Tan\theta = \frac{1}{\sqrt{5}}$ and θ is an acute angle, find without using tables or calculators,

(90 - θ), leaving your answer in simplified surd form.

2. Given that $\sqrt{3} = 1.7321$, express in surd form, rationalize the denominator and then find the value of the expression below to 5 significant figures without using the calculator. (3mks)

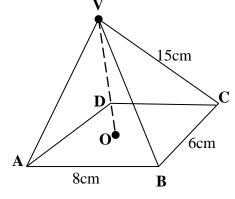
Sin

(2mks)

$$\frac{2 - \tan 60^{\circ}}{3 - 2\cos 30^{\circ}}$$

3. Simplify
$$(1+\sqrt{3})(1-\sqrt{3})$$
 and hence evaluate $\frac{1}{1+\sqrt{3}}$ to 3 significant figures given that $\sqrt{3} = 1.7321$.
(3mks)

- 4. Without using mathematical tables or calculators, find the volume of a container whose base is a regular hexagon of side $\sqrt{3}$ cm and height $2\sqrt{3}$ cm (4 mks)
- 5. Simplify; $\underline{3} 2^+ \sqrt{7}$ leaving the answer in the form $\mathbf{a} + \mathbf{b}\sqrt{\mathbf{c}}$, where \mathbf{a}, \mathbf{b} and \mathbf{c} are rational numbers $\sqrt{7} 2^+ \sqrt{7}$
- 6. Given that:- $\frac{2+\sqrt{5}}{2-\sqrt{5}}$ $\frac{3+\sqrt{5}}{2+\sqrt{5}}$ = $a + b \sqrt{5}$ Find the values of **a** and **b** where **a** and **b** are rational numbers
- 7. If:- 4 = $a\sqrt{7} + b\sqrt{2}$ $\sqrt{7} - \sqrt{12}$ - $\sqrt{7} + \sqrt{2}$ Find the values of **a** and **b**, where **a** and **b** are rational numbers *
- 8. Rationalize the denominator $\frac{2}{(\sqrt{2}-1)^3}$ and express your answer in the form of $\mathbf{a} + \mathbf{c} = 2$
- 9. The figure below is a right pyramid with a rectangular base ABCD and vertex V.



O is the centre of the base and M is a point on OV such that $OM = \frac{1}{3}OV$, AB = 8 cm, BC = 6 cm and VA = VB = VD = VC = 15 cm. Find ; i) The height OV of the pyramid.

- ii) The angle between the plane BMC and base ABCD.
- 10. Find the value of **y** which satisfies the equation $\text{Log }_{10}5 - 2 + \log_{10}(2y + 10) = \log_{10}(y - 4)$
- 11. Simplify the expression $\sqrt{3} \sqrt{2}$ giving your answer in the for of $a + b \sqrt{c}$. $\sqrt{3} + \sqrt{2}$