1. Reflection and Congruence

1. Given that $\mathrm{A}^{\prime}(3,-3)$ is the image of $\mathrm{A}(-1,-5)$ under a reflection. Find the equation of the mirror line in the form of $a x+b y+c=0$
2. Three planes \mathbf{A}, \mathbf{B} and \mathbf{C} leave an airport \mathbf{P} simultaneously at 9.30a.m. Plane \mathbf{A} flies on a bearing of 070° from P at a speed of $400 \mathrm{~km} / \mathrm{h}$. Plane \mathbf{B} flies on a bearing of 290° at a speed of $500 \mathrm{~km} / \mathrm{h}$. Plane C flies on a bearing of 162° from \mathbf{P} at a speed of $300 \mathrm{~km} / \mathrm{h}$.
(Use scale drawing for this question)
(a) Show by scale drawing, the relative positions of the 3planes A, B and C three hours after leaving airport P. (Use scale 1 cm represents 200 km)
(b) After 3 hours, \mathbf{B} turns and head straight to the current position of \mathbf{A} at the same speed it had. Determine the scale drawing, the time it takes to reach this point, to the nearest minute
(c) Determine the bearing and distance of \mathbf{B} from \mathbf{C} after the first 3 hours of flight after leaving \mathbf{P}

2. Rotation

1. Triangle PQR has vertices $\mathrm{P}(3,2), \mathrm{Q}(-1,1)$ and $\mathrm{R}(-3,-1)$.
(a) Draw PQR on the grid provided.
(b) Under a rotation the vertices of $P^{1} Q^{1} R^{1}$ are $P^{1}(1,4), Q^{1}(2,0)$ and $R^{1}(4,-1)$. Find the centre and angle of rotation using points P and Q .
(c) Triangle $P Q R$ is enlarged with scale factor 3 centre $O(0,0)$ to give triangle $P^{2} Q^{2} R^{2}$. Draw triangle $P^{2} Q^{2} R^{2}$ and state its co-ordinates. (2mks)
(d) Triangle $P^{1} Q^{1} R^{1}$ undergoes reflection in line $y=-x$ to give triangle $P^{3} Q^{3} R^{3}$. Draw $P^{3} Q^{3} R^{3}$ and state its coordinates.
2. The figure below shows part of a diagram of rotation symmetry order 3 about a point O . Complete the diagram.

3. In the figure below, triangle $A^{I} B^{\mathrm{I}} \mathrm{C}^{\mathrm{I}}$ is the image of triangle ABC under a rotation, centre O .

By construction, find and label the centre O of the rotation. Hence, determine the angle of the rotation.
4. The ratio of the lengths of the corresponding sides of two similar rectangular water tanks is 3: 5. The volume of the smaller tank is $8.1 \mathrm{~m}^{3}$. Calculate the volume of the larger tank

