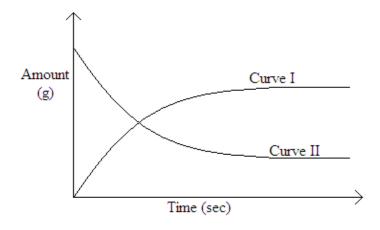
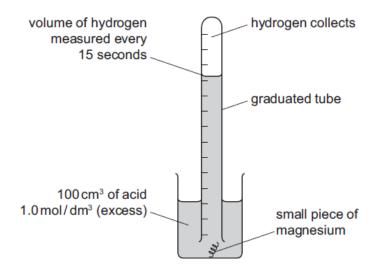
NAME:	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
SCHOOL:	•••••		•••••••		•••••

DATE:


RATE OF REACTION

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in this paper in the spaces provided.


1. The graph below shows the amount of calcium carbonate and calcium chloride varying with time in the reaction:

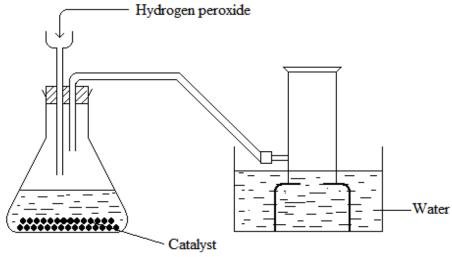
$$CaCO_{3(s)} + 2HCl_{(aq)} {\longrightarrow} CaCl_{2(aq)} + H_2O_{(L)} + CO_{2(g)}$$

(a)	Which curve shows the amount of calcium chloride varying with time	(1mark)
(b)	Explain why the two curves become horizontal after a given period of time.	(1mark)
(c)	Sketch on the graph how curve II would appear if the experiment was repeated	ed using
	a more dilute hydrochloric acid solution.	(1mark)

2. A diagram of the apparatus which could be used to investigate the rate of reaction between magnesium and an excess of an acid is drawn below.

(a) The magnesium kept rising to the surface. In one experiment, this was prevented by
twisting the magnesium around a piece of copper. In a second experiment, the magnesium was
held down by a plastic net fastened to the beaker.
(i) Suggest a reason why magnesium, which is denser than water, floated to the

urface.		
•••••	 	
•••••	 	[1]


(ii) Iron, zinc and copper have siron or zinc to weigh down the	similar densities. Why was copper a better choice than magnesium?
	[1]
(b) The only difference in the tw magnesium. The results are sho	wo experiments was the method used to hold down the own below.
	magnesium held
4	down by copper
volume	
of H ₂ /cm ³	magnesium held
	down by plastic
0	
O.	time/s
(i) In which experiment di	id the magnesium react faster?
	[1]
(ii) Suggest a reason why t	he experiment chosen in (i) had the faster rate.
	[1]
(c) The experiment was repeate hydrochloric acid. Propanoic ac	d using 1.0 mol / dm3 propanoic acid instead of 1.0 mol / dm3 cid is a weak acid.
(i) How would the graph for pracid?	ropanoic acid differ from the graph for hydrochloric
	[1]
(ii) How would the graph for p acid?	ropanoic acid be the same as the graph for hydrochloric

.....[1]

(d) Give **two** factors which would alter the rate of this reaction. For each factor explain why it alters the rate.

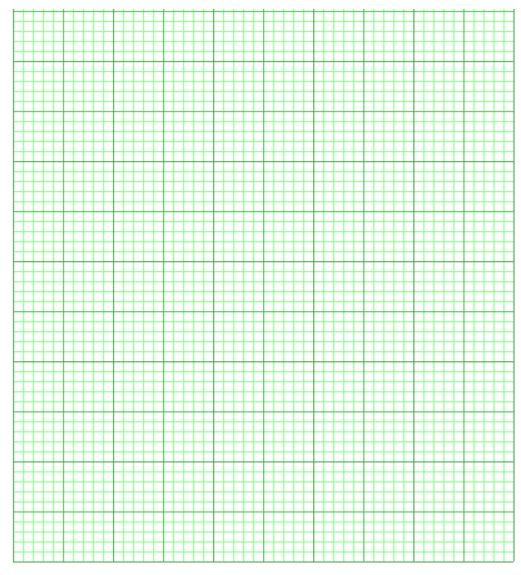
Factor	
Explanation	
Factor	
Explanation	
[4]	
	[Total: 10]

3. (a) The diagram below shows a set – up used by a student in an attempt to prepare and collect oxygen gas.

- (i) **Complete** the diagram by correcting the mistakes on it. (2mks)
- (ii) Name the catalyst used. (1mk)

.....

(iii) Write the equation for the production of oxygen gas. (1mk)

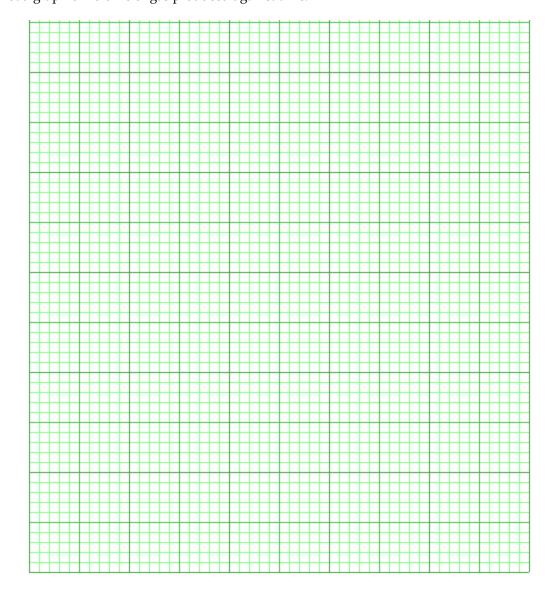

.....

(b) A piece	e of phosphorus was burnt in excess air. The product obtained was shaken	with a
small amo	ount of hot water to make it a solution.	
(i) V	Write an equation for the burning of phosphorus in air.	(1mk)

(ii) The solution obtained in (b) above was found to have a Ph of 2. **Give reasons** for this observation. (1mk)

(c) **Sketch** graph on the grid given below showing how the volume of oxygen (vertical axis)

(i) 0.5g of the catalyst is mixed with 100cm³ of 0.2Mhydrogn peroxide solution at 20°C, label the curve R. (1mk)



varies with time when:-

- (ii) The same experiment is repeated at 30°C, label the curve S. (1mk)
- (iii) The same experiment is repeated at 40°C, label the curve T. (1mk)
- 4. The reaction between 0.65g of zinc granules and excess of 0.5M hydrochloric acid was followed by measuring the amount of gas produced. The following results were obtained

Time (sec)	0	30	60	90	120	150	180	210	240	270
Total volume of gas at	0	80	140	190	220	230	240	240	240	240
r.t.p (cm ³)										

a) Plot a graph of volume of gas produced against time.

4mks

b) (i) V	Vrite an equation for the reaction taking place.	1mk
	(ii) How would the gas produced be identified?	1mk
	(iii) Why is an excess of an acid used?	1mk
	c) From the graph: i) What is the volume of the gas evolved at 75 seconds?	1mk
	ii) At what time is the reaction complete?	1mk
	d) On the same graph, sketch the curves that you expect if the experiment was under the same conditions but using:	repeated
	(i) 0.4M hydrochloric acid, instead of 0.5M hydrochloric acid. Label the graph X(ii) Zinc powder (same quantity) was used in place of granulated zinc. Label tY.	
	e) Calculate the volume of the gas that would be produced at r.t.p from 13g of z (Zn = 65.0, molar gas volume at r.t.p. = 24.0dm³)	zinc.