ORGANIC CHEMISTRY 2

MARKING SCHEME

- You put CH₃CH₂OH in a test tube and also CH₃COOH in another test tube.
 Add Sodium carbonate to each of the test-tubes and note the observations ✓ 1
 In the test tube with CH₃COOH, a loud hissing sound (efferrescence) is herd, whilt in the test tube with CH₃CH₂OH there will be no efferescence ✓ ¹/₂ N/B: Allow other alternative correct explanations
- 2. Monomer molecular mass
 - CH₂ = CH $\| \checkmark \frac{1}{2}$ CN 3C + 3H + 1N 3 x 12 + 3 x 1 + 1 x 14 36 + 3 + 14 = 53 $\checkmark \frac{1}{2}$ $\frac{53n}{53} = \frac{5194}{53} \checkmark \frac{1}{2}$ $n = 98 \checkmark \frac{1}{2}$ Hence there are 98 monomers.
- 3. B \checkmark 1 because it does not contain the carboxyl group (-COO) that combines with the Mg2+ ions to form scum \checkmark 1

$$H H H H$$

$$H H H$$

(b) Bubble the two gases separately through acidified potassium manganate (VII) (1mk) Propene decolourizes it but not propane. (1mk)

Alt: Bubble the two gases separately through bromine (liquid or water) in the dark (1mk) propene decolourizes but not propane

5. (a) $(HCO_2)_n = 90$ (1 + 12 + 16 × 2)n = 90 (¹/₂ mk) 45n = 90

$$n = \frac{90}{45} = 2 \quad \& (HCO_2) \times 2 = H_2 C_2 O_4 \qquad (\frac{1}{2} \text{ mk})$$

Molecula formula of $G = H_2C_2O_4$ (1mk)

J---Alcohol (1m)

G-Ester(1m)

- 6. i) н н н н н н H-C-C-C-C-C-OH (1)н н н н н н
 - ii) Concentrated sulphuric acid (1)Temperature of 180° C (1)
- 7. a)The boiling point of the alkanols increase with the increase in number of carbon atoms(1)
 - b) Presence of the hydrogen bond in alkanols makes their boiling points to be higher than those corresponding alkane (1) (1)
 - c) Pentan-l ol
- 8.a) Vulcanization of rubber is the process of adding sulphur to rubber then heating
 - a. It is harder ; It is tougher ; It is less flexible; Any two

2 mks

9. (a) (i) ethanol [1] CH3-CH2-OH [1] propanoic acid [1] CH3-CH2-COOH [1] independent marking, no ecf accept C2H5 not - HO (ii) type of compound - salt / sodium carboxylate / alkanoate [1] not soap / sodium stearate etc use - soap / cleaning / detergent [1]

(iii) tervlene / PET / Dacron / diolen / mylar / crimplene [1] (b) (i) polyamide / amide / peptide / polypeptide [1] (ii) correct amide linkage NHCO then CONH [1] cond to mark 1, 2 monomers (different shading in box) [1] cond continuation (to ONE correct linkage) [1] OR nylon 6 only one linkage - NHCO [1] cond only one monomer [1] cond continuation (to correct linkage) [1] (iii) use locating agent [1] measure distance travelled by sample / travelled by solvent front [1] cond this is Rf = 0.5 [1]for mark 3, either mark 1 or mark 2 must be awarded accept run a chromatogram of glycine [1] compare with sample same position [1] max [2]

b) RMM of monomer =
$$(8 \times 12) + (8 \times 1)$$

= 96 + 8
= 104 \checkmark 1
 \therefore NO of monomers = $\frac{18.096}{104} \checkmark \frac{1}{2}$
= 174 $\checkmark \frac{1}{2}$

11. (a) (i) Q = conc. Sulphuric acid/ H₂SO_{4(l)} reject sulphuric acid, dilute sulphuric acid, H₂SO₄/ H2SO_{4(aq)} R - Calcium carbide \checkmark / CaC₂ (ii) $CaC_{2(s)} + H_2O_{(l)} \longrightarrow Ca(OH)_{2(s)} + C_2H_{2(g)}$ H H(iii) Chloroethane \checkmark 1 $\stackrel{!}{C} = \stackrel{!}{C} \checkmark$ 1 reject condensed formula. H H(iv) Polymerization. \checkmark 1 (v) Artificial leather for clothing/ shoe/ handbags \checkmark 1 -crates \checkmark 1 - insulation for electric cables and wires \checkmark 1

(b) (i) Soap. ✓ 1

3

PEAK SUCCESS EDUCATION

(ii) Concentrated NaCl/ Brine/ NaCl_(l) ✓ 1

- (iii) To precipitate out the soap ✓ 1
- (iv) potassium hydroxide/ KOH_(aq) ✓ 1

(v) - Cleansing agent is made up of non- polar (hydrocarbon) and polar (head) ✓ ¹/₂
When mixed with oil / grease, the hydrocarbon part is attracted to it. ✓ ¹/₂ while the polar

part stays in water ♥ ½

Polymerisation√1

12. a) i)

Ι

- The oil particles are broken and carried off to the solution. ✓ 1

Fermentation√1 Π ii) Step I – Reagent – Hydrogen√ ½ Condition – Nickel or platinum $\sqrt{1/2}$ Step II – Reagent – Conc. Sulphuric acid√ ½ Condition – Heat√ ½ Step V - Reagent - Potassium permanganate√ 1/2 Condition – Acidified $\sqrt{1/2}$ Conc. CH₃CH₂COOH + CH₃CH₂OH b)i) <u>CH₃CH₂COOHCH₂CH₃ + H₂O $\sqrt{1/2}$ </u> H_2SO_4 $2CH_3CH_2CH_2OH + 2K$ ► $2CH_3CH_2CH_2OK + H_2 \checkmark 1$ ii) x – Potassium propoxide√ 1 L-Ethylpropanoate√ 1 C₃H₆ Decolouries acidified potassium permanganate while C₃H₈ do c) not(2mks) C₃H₆ decolouries bromine liquid while C₃H₈ do not C_3H_6 burns with a sooty flame while C₃H₈ burns with non- sooty flame d) i) RFM of $C_3H_6 = 42 \checkmark$ $42n = 42000 \checkmark$ n = 42000 ✓ 42 = 1000 🗸 (2mks) ii) Non - biodegradable√ 1

i) a. Q $-C_3H_6//CH_2CHCH_3 \checkmark 1$ P - C₄H₁₀// CH₃CH₂CH₂CH₃√1 Н Н Η b) $Q - C = C - C - H\sqrt{1}$ Η Η Η Н Н Н Н | | | | P-H-C-C-C-C-H√1 | | | | H H H H c) Ethanol \checkmark 1/2 and Conc. Sulphuric \checkmark 1/2 acid 1 mk acc. Correct formula of the pds d) Polypropene √1 e) Its non-biodegradable $\sqrt{1}$ ii) a) Carbon hydrogen Oxygen 64.86 13.51 100 - 78.37 = 21.63 mass ✓ ¹/₂ RAM 12 1 16 <u>13.51</u> = 13.51 <u>21.63</u> = 1.352 √ 1/2 Moles 64.86 = 5.405 12 1 16 13.51 = 101.352 = 1√ 1/2 Mole ratio 5.405 = 41.352 1.352 1.352 Empirical formula C₄H₁₀O Molecular formula (C₄H₁₀O \checkmark ¹/₂) n $n = \frac{74}{\sqrt{1/2}} = 1$ 74Molecular formula = $C_4H_{10}O\sqrt{1/2}$ 3mks b) Alcohols / Alkanols $\checkmark 1$ c) $2C_4H_{10}O_{(l)} + 2Na_{(s)} \rightarrow 2C_4H_9ONa_{(aq)} + H_{2(aq)}$ 1 mk d) Displacement ✓ 1

13.

e)	i) Butanoic acid ✓ 1	1 mk Name
	only	
	ii) Colour changes from purple to colourless// potassium man	ganate (VII) is
	decolourised√ 1	

14.	a)	i)	Ι	C II A III B IV D	
	2 ½ mks				
	½ mk		ii)	А	
	2mks	b)	i)	K Ethylpropaoate L Propene	
	1mk		ii)	The solution is decolourised	
			iii)	Ethyne 1mk	
			iv)	I Conc. H_2SO_4 II H+, KMnO _{4(aq)} / H+,K ₂ Cr ₂ O _{7(aq)} III H ₂ IV Cl ₂	2mks
			v)	I Dehydration II Oxidation III Addition IV Subtraction / Chlorination	
		c)	i)	$H \qquad H$ $ \qquad $ $C = C$ $ \qquad $	
				Н	1mk
			ii)	$\left((8 \times 12) + (8 \times 1) \right) n = 104,000$	
				(96 + 8)n = 104,000	

	n= 1000	3mks
iv)	Poor conductor of electricity	1mk