
NITROGEN AND ITS COMPOUNDS

MARKING SCHEME

1.

N/B: Allow other alternative correct methods ✓ 1

- 2. Brown fumes of gas are produced (1mk)
 - a) Conc. Nitric acid is an oxidising agent therefore Oxidises carbon into $(^{1}/_{2}mk)$ carbon (IV) oxide and itself reduced to Nitrogen (IV) oxide (brown fumes) $(^{1}/_{2}mk)$ and water.

b)
$$4HN_{3(l)} + C_{(s)} \longrightarrow 2H_2O_{(l)} + 4NO_{2(g)} + CO_{2(g)}$$
 (1mk)

- 3.(a) (i) Magnesium nitride / Mg_3N_2 (1mk)
 - (ii) Ammonia / $NH_{3(g)}$ (1mk)

(b)
$$Mg_3N_{2(s)} + 6H_2O_{(l)}$$
 \longrightarrow $3Mg(OH)_2 + 2NH_{3(g)}$ (1mk)

4.let oxidation state of N in H⁺NO₃⁻ be n

$$1 + n + 3 \times -2 = 0$$

$$1 + n - 6 = 0 ; n - 5 = 0$$

$$n = +5.$$
(1/2)

Oxidation state of N in NO is +2 ($\frac{1}{2}$ mk)

Hence nitrogen undergoes reduction in oxidation number and nitric acid (V) acid is reduced while Cu is oxidized.

(1mk)

- 5 .a) S is ammonium nitrate (1) R is $Pb(NO_3)_2 / Cu(NO_3)_2 / Zn(NO_3)_2$ (1)
 - b) Alkali metals√
- 6.a) Concentrated nitric acid is decomposed by light to form nitrogen IV Oxide gas which dissolves in the solution to form a yellow colour(1)
 - The green solution (½) of iron II Chloride changes to a yellow colour (½)
 This is because concentrated nitric acid Oxidises iron II chloride to iron III Chloride (1)
- 7. (a) The first few bubbles of the gas contain air/(is not pure nitrogen) which was in the apparatus \checkmark $\frac{1}{2}$

(b)
$$Ca(OH)_{2(aq)} + CO_{2(g)} \longrightarrow CaCO_{3(s)} + H_2O_{(l)} \checkmark 1$$

- (c) To absorb carbon (iv) oxide from the air ✓ ½
- (d) The brown copper metal changes to black. \checkmark 1

8 a)	a)Solid v Ammonium Chloride ✓ ½
	b) Drying agent √ ½
	c) $4NH_{3(g)} + 3O_{2(g)}$ $2N_{2(g)} + 6H_2O_{(l)}$
	d) $4NH_{3(g)} + 5O_2 \longrightarrow 4NO_{(g)} + 6H_2O_{(l)}$

- a) Colour of copper (II) oxide changes from black to brown \checkmark 1 9.
 - b) (i) Nitrogen / N_{2 (g)} ✓ 1 (ii) Water / H₂O _(l) ✓ 1