\qquad

DATE:

MOLE CONCEPT

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in this paper in the spaces provided.

1. Zinc metal and hydrochloric acid react according to the following equation

$$
\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \longrightarrow \mathrm{ZnCl}_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

1.96 g of zinc were reacted with $100 \mathrm{~cm}^{3}$ of 0.2 M Hydrochloric acid,
(a) Determine the reagent that was in excess
(b) Calculate the total volume of hydrogen gas that was liberated at S.T.P conditions $(\mathrm{Zn}=65.4$, molar gas volume $=22.4$ litres at S.T.P $)$
(2mks)
2. Calculate the mass of nitrogen (IV) oxide gas that would occupy the same volume as 10 g of hydrogen gas at the same temperature and pressure. ($\mathrm{H}=1.0, \mathrm{~N}=14.0, \mathrm{O}=16.0$)
(2mks)
3. Urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ is prepared by the reaction between ammonia and carbon(IV) oxide

$$
2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})} \longrightarrow\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

In one process, 340 kg of ammonia were reacted with excess carbon (IV) oxide.
Calculate the moles of urea that were formed. $(\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{~N}=14.0, \mathrm{O}=16.0)$
4. In a filtration experiment $25 \mathrm{~cm}^{3}$ of solution of sodium hydroxide containing 8 g per litre was required for complete neutralization of 0.245 g of a dibasic acid. Calculate the relative molecular mass of the acid. $(\mathrm{Na}=23.0, \mathrm{O}=16, \mathrm{H}=1)$
$5.12 .0 \mathrm{~cm}^{3}$ of methane and $48 \mathrm{~cm}^{3}$ of oxygen were exploded together. The final volume measured under the original conditions was $36.0 \mathrm{~cm}^{3}$ neglecting the water formed. $24.0 \mathrm{~cm}^{3}$ of this was unused oxygen. Show the ratio of reacting volume of the gases referred to and gaseous products formed.
(2marks)
6. 4.9 g a tribasic acid was dissolved in water and the solution made up to $500 \mathrm{~cm}^{3}$. If the concentration of the hydrogen ions in the solution is 0.3 M , calculate the relative molecular mass of the acid.
7. The mass of $1 \mathrm{dm}^{3}$ of gas \mathbf{X} at room temperature and pressure is 2.667 g . Determine the relative molecular mass of the gas (molar gas volume at r.t.p $=24 \mathrm{dm}^{3}$).
8. A solution was made by dissolving 7.5 g of sodium hydroxide containing inert impurities in water and making it to $250 \mathrm{~cm}^{3}$ of solution. If $20 \mathrm{~cm}^{3}$ of this solution is neutralized exactly by $13 \mathrm{~cm}^{3}$ of 1 M hydrochloric acid, calculate the percentage purity of sodium hydroxide.

$$
(\mathrm{Na}=23 ; \mathrm{O}=16 ; \mathrm{H}=1)
$$

9. a) An oxide of nitrogen contains 30.4% nitrogen. Its density at s.t.p is $4.11 \mathrm{~g} / \mathrm{dm}^{3}$.

Determine the molecular formula of the compound.

$$
\left(\mathrm{N}=14 ; \mathrm{O}=16 ; \text { moles gas volume }=22.4 \mathrm{dm}^{3}\right)
$$

b) Magnesium ribbon was burnt in a gas jar of nitrogen. A few drops of water were added to the solid formed in the jar. Write an equation for the second reaction.

```
    (1mk)
```

10. In a experiment, 10.6 g of a mixture of Anhydrous Sodium Carbonate and Sodium Chloride were dissolved in water to make $100 \mathrm{~cm}^{3}$ of a solution required $20.0 \mathrm{~cm}^{3}$ of 0.5 M Hydrochloric acid solution for complete neutralization. What is the mass of Sodium Carbonate in the mixture?
$(\mathrm{Na}=23.0, \mathrm{C}=12.0, \mathrm{O}=16.0, \mathrm{Cl}=35.5)$
(3mks)
11. For the reaction

$$
\mathrm{Na}_{2} \mathrm{SO}_{3(\mathrm{~s})} \quad+2 \mathrm{HCl}_{(\mathrm{aq})} \longrightarrow 2 \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Given that 25.2 g of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ were made to react with $700 \mathrm{~cm}^{3}$ of 0.5 M HCl , which reagent was in excess?
12. 9.42 g of an organic acid RCOOH is dissolved in $600 \mathrm{~cm}^{3} .25 .0 \mathrm{~cm}^{3}$ of this solution was found to require of 0.207 M potassium hydroxide solution for complete neutralization. ($\mathrm{C}=12.0, \quad \mathrm{O}=16.0, \quad \mathrm{H}=1.0$)
i) Determine the formula mass of the acid
ii) Hence the value of R
13. $25.0 \mathrm{~cm}^{3}$ of 0.12 M potassium hydroxide solution required $30.0 \mathrm{~cm}^{3}$ of a solution of a dibasic acid $\left(\mathrm{H}_{2} \mathrm{Y}\right)$ for complete neutralization. The acid contained 3.15 g per $500 \mathrm{~cm}^{3}$ solution. Calculate:
(a) The molarity of the acid solution ($1^{1 ⁄ 2 \mathrm{mks})}$
(b) The relative formula mass of the acid.
($1^{1 / 2 m k s}$)
14. Zinc Sulphate can be used as a dietary supplement in cases of suspected zinc deficiency. The compound crystallizes as anhydrated salt and is readily water soluble.
(b) In a simple experiment to determine the extent of hydration, a technician carefully heated 3.715 g of crystals to a moderate temperature until no further loss in mass occurred. The anhydrous zinc had a mass of 2.08 g .
(i) How many moles of zinc are there in 2.08 g of anhydrous zinc Sulphate? ($\mathbf{Z n}$ $=65, \mathrm{O}=16, \mathrm{~S}=32, \mathrm{H}=1$) (2mks)
(ii) How many moles of water were lost?
(iii) Determine the value of n in the formula $\mathrm{ZnSO}_{4} \cdot \mathrm{nH} 2 \mathrm{O}$.
(c) The daily intake of zinc in Kenya is 15 mg per adult person.
(i) What mass of zinc Sulphate crystals would need to be taken to obtain this intake? (2 mks)
(ii) If this is taken via a 5 ml dose of aqueous zinc Sulphate, calculate the concentration of this solution in molcm ${ }^{-3}$ of the hydrated salt. (2 mks)

