1. Matrices

1. Given that $A=\left(\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right)$ and $B=\left(\begin{array}{rr}11 & 3 \\ 4 & 1\end{array}\right)$ find C such that $\mathrm{B} \times \mathrm{C}=\mathrm{A}$
2. Use matrix method to solve the

$$
\begin{aligned}
& 3 y+2 x=13 \\
& 2 y-3 x=0
\end{aligned}
$$

3. A matrix $P=\left(\begin{array}{rr}2 & -1 \\ -4 & 3\end{array}\right), Q=\binom{a}{b}$ and $R=\binom{2}{1}$. Find the values of a and b given that $\mathrm{PQ}=\mathrm{R}$.

Using matrix method.
4. A matrix A is given as $A=\left(\begin{array}{ll}x & 0 \\ 5 & y\end{array}\right)$
(i) Determine A^{2}
5. Two matrices A and B are such that

$$
\mathrm{A}=\left(\begin{array}{ll}
\mathrm{k} & 4 \\
3 & 2
\end{array}\right) \quad \mathrm{B}=\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}
$$

Given that the determinant of $\mathrm{AB}=4$, find the value of K . (3 mks)
6. Given that A is $\left(\begin{array}{cc}3 & 2 \\ 4 & -1\end{array}\right)$ and $\mathrm{A}\left(\begin{array}{ll}1 & 2 \\ \Pi & \Pi 1 \\ 4 & \frac{-3}{11}\end{array}\right)$

Find the value of a and b in the expression:

$$
\left(\begin{array}{rr}
3 & 2 \\
4 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{r}
12 \\
5
\end{array}\right]
$$

7. Solve for the unknowns given that the following is a singular matrix.

$$
\left(\begin{array}{cc}
1 & 2 \\
x & x-3
\end{array}\right]
$$

8. Given that $\mathrm{A}=\left[\begin{array}{ll}1 & 5 \\ 3 & 7\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{rr}7 & 3 \\ -4 & -2\end{array}\right]$ and that $\mathrm{C}=\mathrm{AB}$, find C^{-1}
9. $\underset{\sim}{B}$ is a matrix $\left[\begin{array}{ll}3 & 2 \\ 2 & 2\end{array}\right]$ and $\underset{\sim}{\mathrm{C}}$ is the matrix $\left(\begin{array}{rr}9 & -3 \\ 2 & 1\end{array}\right]$
. If $\underset{\sim}{\mathrm{A}}$ is a 2×2 matrix and $\mathrm{A} \times \underset{\sim}{\mathrm{B}}=\underset{\sim}{\mathrm{C}}$. determine the matrix $\underset{\sim}{\mathrm{A}}$.
10. An õject of area $20 \mathrm{~cm}^{2}$ undergoes a transformation given bỹ the matrix
$\left[\begin{array}{cc}-1 & -2 \\ 4 & 3\end{array}\right)$ followed by $\left(\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right)$ find the area of the final image.
11. Find the matrix B such that $A B=I$ and $A=\left[\begin{array}{cc}3 & 2 \\ -1 & 3\end{array}\right]$. Hence find the point of intersection of the $\operatorname{lines} \mathbf{3 x}+\mathbf{2 y}=\mathbf{1 0}$ and $\mathbf{3 y}-\mathbf{4}=\mathbf{x}$.

$$
\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right] \quad\left[\begin{array}{cc}
2 & -3 \\
-1 & 2
\end{array}\right)
$$

12. Given that $\mathbf{P}=$ and $\mathbf{Q}=$ find ;the matrix product PQ. Hence solve the simultaneous equations below:-

$$
\begin{aligned}
& 2 x-3 y=5 \\
& -x+2 y=-3
\end{aligned}
$$

13. Solve for \boldsymbol{x} and \boldsymbol{y} in the following matrix equation using elimination method

$$
\left(\begin{array}{cc}
1 / 2 & -1 / 4 \\
2 / 5 & 1 / 6
\end{array}\right) \quad\binom{x}{y}=\binom{2}{6}
$$

14. A triangle $X Y Z, X(-1,-1), Y(-2,-4) Z(-6,-9)$ is reflected in the line X axis followed by a reflection in line $\mathrm{X}=\mathrm{Y}$. Find the image of the final image
15. Triangle ABC is the image of triangle PQR under a transformation $\mathbf{M}=\left(\begin{array}{cc}2 & 4 \\ 0 & 2\end{array}\right)$ where
$\mathrm{P}, \mathrm{Q}, \mathrm{R}$ map onto A, B, C respectively. Given the points $\mathrm{P}(5,-1) \mathrm{Q}(6,-1)$ and $\mathrm{R}(4,-0.5)$ draw the triangle ABC on the grid provided.
b) Triangle ABC in (a) above is to be enlarged by scale factor 2 with centre at $(11,-6)$ to map onto $A^{1} B^{1}$ and C^{1}. Construct and label triangle $A^{1} B^{1}$ and C^{1} on the same grid.
c) By construction, find the coordinates of the centre and the angle of rotation which can be used to rotate triangle $A^{I} B^{I} C^{I}$ onto triangle $A^{I I} B^{I I} C^{I I}$ whose coordinates are $(-3,-2),(-3,-6)$ and $(-1,-2)$ respectively.
16. Triangle $A B C$ with an area of $15 \mathrm{~cm}^{2}$ is mapped onto triangle $A^{I} B^{\mathrm{I}} \mathrm{C}^{\mathrm{I}}$ using matrix $\mathrm{M}=\left(\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right)$. Find the area of triangle $A^{\mathrm{I}} \mathrm{B}^{\mathrm{I}} \mathrm{C}^{\mathrm{I}}$.
17. T is a transformation represented by the matrix $\left[\begin{array}{cc}5 x & 2 \\ -3 & x\end{array}\right]$ under \mathbf{T} a square whose area is $10 \mathrm{~cm}^{2}$ is mapped onto a square of area $110 \mathrm{~cm}^{2}$. Find the possible values of \mathbf{X}
18. Triangle $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ is the image of $\Delta \mathrm{ABC}$ under a transformation represented by the matrix $\mathrm{M}=\left(\begin{array}{ll}3 & 2 \\ 9 & 5\end{array}\right)$
If the area of triangle $A^{1} B^{1} C^{1}$ is $54 \mathrm{~cm}^{2}$. Determine the area of triangle $A B C$
19. Find the matrix B such that $A B=I$ and $A=\left[\begin{array}{ll}3 & 2 \\ -1 & 3\end{array}\right]$. Hence find the point of intersection of the lines $\mathbf{3 x}+\mathbf{2 y}=\mathbf{1 0}$ and $\mathbf{3 y}-\mathbf{4}=\mathbf{x}$.
