1. Matrices and Transformations

- 1. a) (i) On the grid provided, with the same scale on both axes, draw the square S whose vertices are (0, 0), (2, 0), (2,2) and (0, 2). (1 mk)(ii) Find the coordinates and draw the image T of S under the transformation whose matrix A maps a point (x, y) onto (x', y') where; $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2x - y \\ x + 2y \end{pmatrix}$ (3 mks)(iii) Draw the image U of S under the transformation whose matrix is $B = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$ (2 mks)(b) (i) Find the product AB and draw the image V of S under the transformation whose matrix is AB (3 mks)(ii) Describe the single transformation that maps S onto V (1 mk)2. On the grid provided, draw triangle PQR with P(2,3), Q(1,2) and R(4,1). On the same axes draw triangle $P^{11}Q^{11}R^{11}$ with vertices $P^{11}(-2,3)$, $Q^{11}(-1,2)$ and $R^{11}(-4,1)$. (2mks) (a) Describe fully a single transformation which will map triangle PQR onto triangle $P^{11}Q^{11}R^{11}$. (1mk)(b) On the same plane, draw triangle $P^1Q^1R^1$ the image of triangle PQR under reflection in the line y = -x. (2mks) (c) Describe fully a single transformation which maps triangle $P^1Q^1R^1$ onto triangle $P^{11}Q^{11}R^{11}$. (2mks) (d) Draw triangle $P^{111}Q^{111}R^{111}$ such that it can be mapped onto triangle PQR by a position quarter about (0,0) (2mks) (e) State all pairs of triangles that are oppositely congruent. (1mk)
- 3. a) Given the transformation matrices

$$T1 = \begin{pmatrix} 2 & 1 \\ -1 & -2 \end{pmatrix} \quad \text{and} \quad T2 = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

and that transformation T_1 followed by T_2 can be replaced by a single transformation T, write down the matrix for T. (3 marks)

- a) Find the inverse of matrix T (2 marks)
- b) The points A¹¹(7,-11), B¹¹(-7,-13), C¹¹(-8,16) and D¹¹(8,8) are the images of points A, B, C and D respectively under transformation T₁ followed by T2 Write down the co-ordinates of A, B, C, and D. (5 marks)
- 4. A(3, 7), B(5, 5), C(3, 1), D(1, 5)

a) On the grid provided in the next page, plot ABCD on a Cartesian plane

5.

6.

8.

(2mks)

- (a) Under a certain rotation A(2,0) is mapped onto A¹(-4, 2) and B(0,5) is mapped onto B¹(-9, o)
 (i) On the grid provided plot the lines AB and A¹B¹ on the same axes 9.
 - (ii) Hence determine by construction the co-ordinates of the centre and angle of rotation (b) Under a quarter positive turn about the origin O, A^1 is mapped onto A^{11} and B^1 is mapped

onto B¹¹. Determine the co-ordinates of A¹¹ and B¹¹

- (c) Describe fully a single transformation which would map A to A^{11} and B to B^{11}
- 10. A transformation **T** is represented by the matrix $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ and transformation $\mathbf{U} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ by the

matrix. Given that a rectangle has co-ordinates at A (1,2) B(6, 2), C(6, 4) and D (1, 4) and that under **T** the image of ABCD is $A_1B_1C_1D$ and under **U** the image of $A_1B_1C_1D$ is $A_2B_2C_2D_2$: (a) Find the co-ordinates of $A_1B_1C_1D_1$ and $A_2B_2C_2D_2$

- (b) On the grid provided, plot ABCD, $A_1B_1C_1D_1$ and $A_2B_2C_2D_2$
- (c) Describe the transformation represented by:-
 - (i) U
 - (ii) UT
- (d) If $A_2B_2C_2D_2$ were to be transformed by a transformation represented by the matrix to map onto $A_3B_3C_3D_3$. What would be the area of $A_3B_3C_3D_3$
- 11. The vertices of a quadrilateral are A(2,2) B(8,2), C (8,6) and D(6,4) under a rotation the images of vertices A and D are A(0,8) and D1(-2, 12).
 - (a) On the grid provided and using the same axes draw the quadrilateral ABCD and the points A^1 and D^1
 - (b) Determine the centre and angle of rotation
 - (c)Locate the points B^1 and C^1 under the rotation and complete the quadrilateral
- 12. A translation maps the point P(5, -3) onto $P^{1}(2, -5)$ (a) Determine the translation vector T
 - A Point R^1 is the image of R(-2, -3) under the same translation in (a) above, find the magnitude of P^1R^1
- 13. Triangle ABC has vertices at A(0, -1), B(4, 3)and C(2,2). (a) Find the coordinates of image triangle $A^1B^1C^1$ of triangle ABC under translation $\begin{bmatrix} 1\\ 2 \end{bmatrix}$
 - (b) Given that triangle $A^{11}B^{11}C^{11}$ is the image of triangle $A^{1}B^{1}C^{1}$ under an enlargement scale factor 3, centre O(0,0), find the coordinates of A^{11} , B^{11} and C^{11}
 - (c) If the area of triangle $A^{1}B^{1}C^{1}$ is 24 cm², calculate the area of triangle $A^{11}B^{11}C^{11}$
 - (d) Find the matrix that maps triangle $A^{11}B^{11}C^{11}$ onto triangle ABC
- 14. a) The triangle ABC where A (2,-1) B (1, 2) and C (4, 4) is reflected in the line X = 4 to give triangle A₁B₁C₁. Draw the two triangles on the graph provided and state the co-ordinates of A₁B₁C₁
 - b) Draw the triangle $A_2(5,6)$, $B_2(2,7)$ and $C_2(0,4)$. Given that triangle $A_2B_2C_2$ is the image of triangle $A_1B_1C_1$ under rotation, determine the centre and angle of this rotation
 - c) Show the image of triangle $A_2B_2C_2$, under an enlargement centre (0, 6) scale factor -1
- 15. (a) Find the co-ordinates for the image of point **P(6, -2)** under the transformation defined by : $x^{1} = x - 3y$ $y^{1} = 2x$
 - (b) (i) A quadrilateral ABCD has vertices A(4, -3), B(2, -3), C(4, -1) and D(5, -4). On the grid provided, draw the quadrilateral ABCD
 - (ii) $A^{1}B^{1}C^{1}D^{1}$ is the image of ABCD under a rotation through +90° about the origin. On the same axes, draw $A^{1}B^{1}C^{1}D^{1}$ under the transformation
 - (c) $A^2B^2C^2D^2$ is the image of under $A^1B^1C^1D^1$ under another transformation by the matrix $\begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$ (i) Determine the co-ordinates of $A^2B^2C^2D^2$ and plot it on the same axes
 - (ii) Describe the transformation that maps $A^1B^1C^1D^1$ onto $A^2B^2C^2D^2$
 - (d) Find a single matrix of transformation that would map $A^2B^2C^2D^2$ onto ABCD

(b)

- 16. (a) Triangle **XYZ** has vertices **X**(2, -1) **Y**(4, -1) and **Z** (4,2). Triangle XYZ maps onto triangle $X^{1}Y^{1}Z^{1}$ under transformation $T_{1} = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}$. Draw triangles XYZ and its image $X^{1}Y^{1}Z^{1}$ on the grid provided (b) Another triangle $X^{11}Y^{11}Z^{11}$ is the image of $X^{1}Y^{1}Z^{1}$ after transformation $T_{2} = \dots$.
 - (b) Another triangle $X^{11}Y^{11}Z^{11}$ is the image of $X^1Y^1Z^1$ after transformation $T_{2=}$ Draw triangle $X^{11}Y^{11}Z^{11}$ on the same set of axes
 - (c) Find the single transformation matrix **T** that maps triangle XYZ on to the final image $X^{11}Y^{11}Z^{11}$
 - (d) Given that the area of triangle XYZ is 15cm^2 , find the area of the triangle $X^{11}Y^{11}Z^{11}$
- 17. The quadrilateral A (2,1), B (4,1), C (4,4) and D (2,4) is mapped onto A'B' C'D' by a matrix M_1 such that A^1 (8,7), B^1 (14,7), C^1 (14,16) and D^1 (8,16).
 - a) Draw both ABCD and $A^{1}B^{1} C^{1}D^{1}$ on the same plane
 - b) Find the matrix of transformation that mapped ABCD onto A'B' C'D' and describe it fully
 - c) A¹B¹ C¹D¹ underwent another matrix transformation at N which is a translation that gave the image A¹¹ B¹¹ C¹¹ D¹¹, Where A¹¹ (7,9), B¹¹ (13,9), C¹¹ (13,18) and D¹¹ (7,18). The transformation N is a translation . Find the translation
 - d) Draw $A^{11} B^{11} C^{11} D^{11}$ on the same axes where ABCD and $A^{1}B^{1} C^{1}D^{1}$ were drawn
- 18. a) On the grid provided. Plot the points A(2, -1) B (0, -3) C(2, -4) and D (4, -2) and join them to form a quadrilateral ABCD. What is the name of this quadrilateral?
 - b) The points $A^1(1, 2) B^1(3, 0) C^1(4, 2)$ and $D^1(2, 4)$ are the images of ABC and D under a certain transformation T_1 . On the same grid draw quadrilateral $A^1B^1C^1D^1$ and describe transformation T_1 fully.
 - c) The points $A^{11}(-2, -4) B^{11}(-6, 0) C^{11}(-8, -4)$ and $D^{11}(-4, -8)$ are the images of $A^1B^1C^1D^1$ under transformation T₂. On the same grid draw quadrilateral $A^{11}B^{11}C^{11}D^{11}$ and describe the transformation T₂ fully.
 - d) On the same grid draw quadrilateral A¹¹¹ B¹¹¹ C¹¹¹ D¹¹¹, the image of A¹¹ B¹¹ C¹¹ D¹¹ under a reflection in the x-axis. State the co-ordinates of A¹¹¹ B¹¹¹ C¹¹¹ D¹¹¹.
- 19. The Points $A^{1}B^{1}$ and C^{1} are the images of A(4, 1), B(0, -2) and C(-2, 4) respectively under a transformation represented by the matrix;

$$\mathbf{M} = \begin{pmatrix} -1 & 1 \\ 2 & -3 \end{pmatrix}$$

(a) Write down the coordinates of $A^1 B^1$ and C^1

(b) $A^{11} B^{11}$ and C^{11} are the images of $A^1 B^1$ and C^1 under another transformation whose Matrix is: $N = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$ Write down the coordinates of $A^{11} B^{11}$ and C^{11}

(c) Transformation M followed by N can be represented by a single transformation P. Determine the matrix for P

(d) A matrix **P** is given by
$$\begin{pmatrix} 8 & 7 \\ 4 & 5 \end{pmatrix}$$
Find P⁻¹

20. Triangle $A^1B^1C^1$ is the image of triangle ABC under a transformation represented by matrix $T = \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}$ If the area of triangle $A^1B^1C^1$ is 25.6cm², find the area of the object

- 21. A point P(2, -4) is mapped into $P^{1}(4, 0)$ under a translation. Determine the image of point Q(-1, 2) under the same translation
- 22. The points A (2, 6), B (1, 1), C (2, 3) and D (4,0) are the vertices of quadrilateral ABCD.(a) On graph paper plot the points A, B, C, and D and join them to form quadrilateral ABCD.
 - (b) The points A, B, C and D are the images of A¹, B¹, C¹ and D¹ respectively under an enlargement centre the origin and scale factor -2. On the same grid draw the image quadrilateral A¹ B¹ C¹ D¹.
 - (c) The points A¹¹ B¹¹ C¹¹ and D¹¹ are the images of ABCD respectively under reflection in the x axis. On the same grid, locate the pints A¹¹ B¹¹ C¹¹ and D¹¹ and draw the second image quadrilateral A¹¹ B¹¹ C¹¹ D¹¹.
 (d) Quadrilateral A¹¹¹ B¹¹¹ C¹¹¹ D¹¹¹ is the image of ABCD under a certain transformation T.
 - (d) Quadrilateral A¹¹¹ B¹¹¹ C¹¹¹ D¹¹¹ is the image of ABCD under a certain transformation T. Describe transformation T fully.
- 23. T is a transformation represented by the matrix $\begin{bmatrix} x & -3 \end{bmatrix}$. Under T, a square of area 10 cm^2 is mapped onto a square 110 cm^2 . Find the values of x