1. Matrices and Transformations

1. a) (i) On the grid provided, with the same scale on both axes, draw the square S whose vertices are $(0,0),(2,0),(2,2)$ and $(0,2)$.
(ii) Find the coordinates and draw the image T of S under the transformation whose matrix A maps a point (x, y) onto ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$)
where; $\binom{x^{\prime}}{y^{\prime}}=\binom{2 x-y}{x+2 y}$
(3 mks)
(iii) Draw the image U of S under the transformation whose matrix is

$$
B=\left(\begin{array}{cc}
2 & 1 \tag{2mks}\\
-1 & 2
\end{array}\right)
$$

(b) (i) Find the product AB and draw the image V of S under the transformation whose matrix is $A B$
(ii) Describe the single transformation that maps S onto V
2. On the grid provided, draw triangle PQR with $\mathrm{P}(2,3), \mathrm{Q}(1,2)$ and $\mathrm{R}(4,1)$. On the same axes draw triangle $P^{11} Q^{11} R^{11}$ with vertices $P^{11}(-2,3), Q^{11}(-1,2)$ and $R^{11}(-4,1)$.
(a) Describe fully a single transformation which will map triangle $P Q R$ onto triangle $P^{11} Q^{11} R^{11}$.
(b) On the same plane, draw triangle $P^{1} Q^{1} R^{1}$ the image of triangle $P Q R$ under reflection in the line $y=-x$. (2mks)
(c) Describe fully a single transformation which maps triangle $\mathrm{P}^{1} \mathrm{Q}^{1} \mathrm{R}^{1}$ onto triangle $\mathrm{P}^{11} \mathrm{Q}^{11} \mathrm{R}^{11}$. (2mks)
(d) Draw triangle $\mathrm{P}^{111} \mathrm{Q}^{111} \mathrm{R}^{111}$ such that it can be mapped onto triangle PQR by a position quarter about $(0,0)$
(e) State all pairs of triangles that are oppositely congruent.
3. a) Given the transformation matrices

$$
\mathrm{T} 1=\left(\begin{array}{cc}
2 & 1 \\
-1 & -2
\end{array}\right) \quad \text { and } \quad \mathrm{T} 2=\left[\begin{array}{cc}
3 & 1 \\
1 & 3
\end{array}\right]
$$

and that transformation T_{1} followed by T_{2} can be replaced by a single transformation T , write down the matrix for T. (3 marks)
a) Find the inverse of matrix T (2 marks)
b) The points $\mathrm{A}^{11}(7,-11), \mathrm{B}^{11}(-7,-13), \mathrm{C}^{11}(-8,16)$ and $\mathrm{D}^{11}(8,8)$ are the images of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively under transformation T_{1} followed by T 2
Write down the co-ordinates of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .
4. $\mathrm{A}(3,7), \mathrm{B}(5,5), \mathrm{C}(3,1), \mathrm{D}(1,5)$
a) On the grid provided in the next page, plot ABCD on a Cartesian plane
b) $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ ' is the image of ABCD under a translation $T\binom{-6}{-9}$. Plot $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$, and state its coordinates.
(2mks)
c) Plot A"B"C"D", the image of A'B'C'D' after a rotation about $(-1,0)$ through a positive quarter turn. State its coordinates.
(3mks)
d) A"'B"' $\mathrm{C} " \mathrm{D}$ " is the image of $\mathrm{A}{ }^{\prime} \mathrm{B}^{\prime \prime} \mathrm{C} " \mathrm{D} "$ after a reflection in the line $\mathrm{y}=\mathrm{x}+2$. Plot A"'B"'C"D" and state its coordinates
5. A transformation represented by the matrix $\left(\begin{array}{cc}-2 & 1 \\ 1 & 2\end{array}\right) \operatorname{maps} \mathrm{P}(0,0), \mathrm{Q}(2,0), \mathrm{R}(2,3)$ and S(0,3) onto P', Q', R', S'
a) On the grid provided draw the quadrilateral $P Q R S$ and $P^{\prime} Q^{\prime} R$ 'S'
b) (i) Determine the area of PQRS
(ii) Hence or otherwise find the area of P'Q'R'S'
(2mks)
c) A transformation represented by the matrix $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$ maps P'Q'R'S' onto

P"Q"R"S". Determine the matrix of transformation that would map P"Q"R"S" onto PQRS
(3mks)
6. A translator T maps $P(8,-2)$ onto $P^{1}(-2,-3)$. Find the image of $Q(6,-2)$ under the same translation.
(3 mks)
7. The vertices of a triangle are $A(2,5), B(4,3)$ and $C(2,3)$. H represents a half turn rotation about the point $(0,2)$.
a) Draw triangle ABC and $A^{\prime}, B^{\prime}, C^{\prime}$ under H (4 marks)
b) T represents a reflection in the lone $x=0$ and K represent a translation $\binom{0}{-2}$. Find the coordinates of $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ of $A^{\prime}, B^{\prime}, C^{\prime}$ under TK. Hence draw $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ (4 marks)
c) Describe a single transformation that maps ABC onto $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$
(2 marks)
8. Given triangle ABC with vertices $\mathrm{A}(-6,5), \mathrm{B}(-4,1)$ and $\mathrm{C}(3,2)$ and that $\mathrm{A}(-6,5)$ is mapped onto $\mathrm{A}^{1}(-6,-4)$ by a shear with y -axis in variant. On the grid provided below;
(i) draw triangle ABC
(ii) draw triangle $A^{1} B^{1} C^{1}$, the image of triangle $A B C$, under the shear
(iii) determine the matrix representing the shear
(b) Triangle $A^{1} B^{1} C^{1}$ is mapped onto $A^{11} B^{11} C^{11}$ by a transformation defined by the matrix $\left(\begin{array}{cc}-1 & 0 \\ 3 / 2 & -1\end{array}\right)$
(i) Draw triangle $A^{11} B^{11} C^{11}$ on the same grid as $A B C$ and $A^{1} B^{1} C^{1}$
(ii) Describe fully a single transformation that maps $A^{11} B^{11} C^{11}$
9. (a) Under a certain rotation $A(2,0)$ is mapped onto $A^{1}(-4,2)$ and $B(0,5)$ is mapped onto $B^{1}(-9, o)$
(i) On the grid provided plot the lines $A B$ and $A^{1} B^{1}$ on the same axes
(ii) Hence determine by construction the co-ordinates of the centre and angle of rotation
(b) Under a quarter positive turn about the origin O, A^{1} is mapped onto A^{11} and B^{1} is mapped
onto B^{11}. Determine the co-ordinates of A^{11} and B^{11}
(c) Describe fully a single transformation which would map A to A^{11} and B to B^{11}
10. A transformation \mathbf{T} is represented by the matrix $\left[\begin{array}{rr}\mathbf{0} & \mathbf{- 1} \\ \mathbf{- 1} & \mathbf{0}\end{array}\right)$ and transformation $\left.\mathcal{U}_{\mathbf{0}}^{\mathbf{0}} \mathbf{- \mathbf { 1 }} \mathbf{- \mathbf { 1 }} \mathbf{0}\right]$ by the matrix. Given that a rectangle has co-ordinates at $\mathrm{A}(1,2) \mathrm{B}(6,2), \mathrm{C}(6,4)$ and $\mathrm{D}(1,4)$ and that under \mathbf{T} the image of ABCD is $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} D$ and under \mathbf{U} the image of $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} D$ is $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} D_{2}$:
(a) Find the co-ordinates of $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1}$ and $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$
(b) On the grid provided, plot $\mathrm{ABCD}, \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1}$ and $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$
(c) Describe the transformation represented by:-
(i) U
(ii) UT
(d) If $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$ were to be transformed by a transformation represented by the matrix to map onto $A_{3} B_{3} C_{3} D_{3}$. What would be the area of $A_{3} B_{3} C_{3} D_{3}$
11. The vertices of a quadrilateral are $\mathrm{A}(2,2) \mathrm{B}(8,2), \mathrm{C}(8,6)$ and $\mathrm{D}(6,4)$ under a rotation the images of vertices A and D are $\mathrm{A}(0,8)$ and $\mathrm{D} 1(-2,12)$.
(a) On the grid provided and using the same axes draw the quadrilateral $A B C D$ and the points A^{1} and D^{1}
(b) Determine the centre and angle of rotation
(c)Locate the points B^{1} and C^{1} under the rotation and complete the quadrilateral
12. A translation maps the point $\mathrm{P}(5,-3)$ onto $\mathrm{P}^{1}(2,-5)$
(a) Determine the translation vector T

A Point R^{1} is the image of $\mathrm{R}(-2,-3)$ under the same translation in (a) above, find the magnitude of $\mathrm{P}^{1} \mathrm{R}^{1}$
13. Triangle ABC has vertices at $\mathrm{A}(0,-1), \mathrm{B}(4,3)$ and $\mathrm{C}(2,2)$.
(a) Find the coordinates of image triangle $A^{1} B^{1} C^{1}$ of triangle $A B C$ under translation vector
(b) Given that triangle $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11}$ is the image of triangle $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ under an enlargement scale factor 3 , centre $\mathrm{O}(0,0)$, find the coordinates of $\mathrm{A}^{11}, \mathrm{~B}^{11}$ and C^{11}
(c) If the area of triangle $A^{1} B^{1} C^{1}$ is $24 \mathrm{~cm}^{2}$, calculate the area of triangle $A^{11} B^{11} C^{11}$
(d) Find the matrix that maps triangle $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11}$ onto triangle ABC
14. a) The triangle $A B C$ where $A(2,-1) \quad B(1,2)$ and $C(4,4)$ is reflected in the line $X=4$ to give triangle $A_{1} B_{1} C_{1}$. Draw the two triangles on the graph provided and state the co-ordinates of $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$
b) Draw the triangle $A_{2}(5,6), B_{2}(2,7)$ and $C_{2}(0,4)$. Given that triangle $A_{2} B_{2} C_{2}$ is the image of triangle $A_{1} B_{1} C_{1}$ under rotation, determine the centre and angle of this rotation
c) Show the image of triangle $A_{2} B_{2} C_{2}$, under an enlargement centre $(0,6)$ scale factor -1
15. (a) Find the co-ordinates for the image of point $\mathbf{P}(\mathbf{6}, \mathbf{- 2})$ under the transformation defined by :-

$$
\begin{aligned}
& x^{1}=x-3 y \\
& y^{1}=2 x
\end{aligned}
$$

(b) (i) A quadrilateral ABCD has vertices $\mathrm{A}(4,-3), \mathrm{B}(2,-3), \mathrm{C}(4,-1)$ and $\mathrm{D}(5,-4)$. On the grid provided, draw the quadrilateral ABCD
(ii) $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$ is the image of ABCD under a rotation through $+90^{\circ}$ about the origin.

On the same axes, draw $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$ under the transformation
(c) $A^{2} B^{2} C^{2} D^{2}$ is the image of under $A^{1} B^{1} C^{1} D^{1}$ under another transformation by the matri \mathbb{C}
(i) Determine the co-ordinates of $A^{2} B^{2} C^{2} D^{2}$ and plot it on the same axes
(ii) Describe the transformation that maps $A^{1} B^{1} C^{1} D^{1}$ onto $A^{2} B^{2} C^{2} D^{2}$
(d) Find a single matrix of transformation that would map $A^{2} B^{2} C^{2} D^{2}$ onto $A B C D$
16. (a) Triangle $\mathbf{X Y Z}$ has vertices $\mathbf{X}(2,-1) \mathbf{Y}(4,-1)$ and $\mathbf{Z}(4,2)$. Triangle $X Y Z$ maps onto triangle $X^{1} Y^{1} Z^{1}$ under transformation $\left.T_{1}=1 \begin{array}{ll}1 & -3\end{array}\right]$. Draw triangles $X Y Z$ and its image $X^{1} Y^{1} Z^{1}$ on the grid provided
(b) Another triangle $X^{11} Y^{11} Z^{11}$ is the image of $X^{1} Y^{1} Z^{1}$ after transformation $\mathbf{T}_{2}=$ Draw triangle $X^{11} Y^{11} Z^{11}$ on the same set of axes
(c) Find the single transformation matrix \mathbf{T} that maps triangle $X Y Z$ on to the final image $X^{11} Y^{11} Z^{11}$
(d) Given that the area of triangle XYZ is $15 \mathrm{~cm}^{2}$, find the area of the triangle $\mathrm{X}^{11} \mathrm{Y}^{11} \mathrm{Z}^{11}$
17. The quadrilateral $\mathrm{A}(2,1), \mathrm{B}(4,1), \mathrm{C}(4,4)$ and $\mathrm{D}(2,4)$ is mapped onto $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ by a matrix M_{1} such that $A^{1}(8,7), B^{1}(14,7), C^{1}(14,16)$ and $D^{1}(8,16)$.
a) Draw both $A B C D$ and $A^{1} B^{1} C^{1} D^{1}$ on the same plane
b) Find the matrix of transformation that mapped ABCD onto $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ and describe it fully
c) $A^{1} B^{1} C^{1} D^{1}$ underwent another matrix transformation at N which is a translation that gave the image $A^{11} B^{11} C^{11} D^{11}$, Where $A^{11}(7,9), B^{11}(13,9), C^{11}(13,18)$ and $D^{11}(7,18)$.
The transformation N is a translation. Find the translation
d) Draw $A^{11} B^{11} C^{11} D^{11}$ on the same axes where $A B C D$ and $A^{1} B^{1} C^{1} D^{1}$ were drawn
18. a) On the grid provided. Plot the points $A(2,-1) \quad B(0,-3) \quad C(2,-4)$ and $D(4,-2)$ and join them to form a quadrilateral ABCD . What is the name of this quadrilateral?
b) The points $A^{1}(1,2) B^{1}(3,0) C^{1}(4,2)$ and $D^{1}(2,4)$ are the images of $A B C$ and D under a certain transformation T_{1}. On the same grid draw quadrilateral $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$ and describe transformation T_{1} fully.
c) The points $A^{11}(-2,-4) B^{11}(-6,0) C^{11}(-8,-4)$ and $D^{11}(-4,-8)$ are the images of $A^{1} B^{1} C^{1} D^{1}$ under transformation T_{2}. On the same grid draw quadrilateral $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \mathrm{D}^{11}$ and describe the transformation T_{2} fully.
d) On the same grid draw quadrilateral $A^{111} B^{111} C^{111} D^{111}$, the image of $A^{11} B^{11} C^{11} D^{11}$ under a reflection in the x-axis. State the co-ordinates of $A^{111} B^{111} C^{111} D^{111}$.
19. The Points $A^{1} B^{1}$ and C^{1} are the images of $A(4,1), B(0,-2)$ and $C(-2,4)$ respectively under a transformation represented by the matrix;

$$
\mathrm{M}=\left[\begin{array}{rr}
-1 & 1 \\
2 & -3
\end{array}\right)
$$

(a) Write down the coordinates of $\mathrm{A}^{1} \mathrm{~B}^{1}$ and C^{1}
(b) $\mathrm{A}^{11} \mathrm{~B}^{11}$ and C^{11} are the images of $\mathrm{A}^{1} \mathrm{~B}^{1}$ and C^{1} under another transformation whose Matrix is:
$\mathrm{N}=\left(\begin{array}{rr}2 & -1 \\ 1 & 2\end{array}\right) \quad$ Write down the coordinates of $\mathrm{A}^{11} \mathrm{~B}^{11}$ and C^{11}
(c) Transformation \mathbf{M} followed by \mathbf{N} can be represented by a single transformation \mathbf{P}.

Determine the matrix for \mathbf{P}
(d) A matrix \mathbf{P} is given by $\left[\begin{array}{ll}8 & 7 \\ 4 & 5\end{array}\right)$
Find P^{-1}
20. Triangle $A^{1} B^{1} C^{1}$ is the image of triangle $A B C$ under a transformation represented by matrix $\mathrm{T}=\left(\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right)$ If the area of triangle $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ is $25.6 \mathrm{~cm}^{2}$, find the area of the object
21. A point $P(2,-4)$ is mapped into $P^{1}(4,0)$ under a translation.

Determine the image of point $\mathrm{Q}(-1,2)$ under the same translation
22. The points $\mathrm{A}(2,6), \mathrm{B}(1,1), \mathrm{C}(2,3)$ and $\mathrm{D}(4,0)$ are the vertices of quadrilateral ABCD .
(a) On graph paper plot the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D and join them to form quadrilateral ABCD .
(b) The points A, B, C and D are the images of $\mathrm{A}^{1}, \mathrm{~B}^{1}, \mathrm{C}^{1}$ and D^{1} respectively under an enlargement centre the origin and scale factor -2 . On the same grid draw the image quadrilateral $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$.
(c) The points $\mathrm{A}^{11} \mathrm{~B}{ }^{11} \mathrm{C}^{11}$ and D^{11} are the images of ABCD respectively under reflection in the x - axis. On the same grid, locate the pints $A^{11} B^{11} C^{11}$ and D^{11} and draw the second image quadrilateral $A^{11} B^{11} C^{11} D^{11}$.
(d) Quadrilateral $\mathrm{A}^{111} \mathrm{~B}^{111} \mathrm{C}^{111} \mathrm{D}^{111}$ is the image of ABCD under a certain transformation T . Describe transformation T fully.
23. T is a transformation represented by the matrix

$$
\left(\begin{array}{cc}
5 x & 2 \\
x & -3
\end{array}\right)
$$

$10 \mathrm{~cm}^{2}$ is mapped onto a square $110 \mathrm{~cm}^{2}$. Find the values of x

