1.

$$
\sqrt{ } \sqrt{ } \text { Construction of } \angle 60^{\circ} \text { and } \angle 90^{\circ}
$$

Bisect $\angle \mathrm{btw} 90^{\circ}$ and 60° to obtain $\angle 75^{\circ}$
$\sqrt{ }$ Construction of the given sides

Construction of $\triangle X Y Z$

2.

$$
\begin{gathered}
A C=8 \mathrm{~cm} \pm 0.1 \\
\angle A C B=46^{\circ} \pm 1^{0}
\end{gathered}
$$

3.

a) $A C=12.9 \pm 0.1 \mathrm{~cm}$
b) i) Line and well shaded B2
c) $h=7 \pm 0.1$
d) $\triangle A B C$ \qquad Area $=1 / 2 \times 8 \times 7 \mathrm{~cm}$ $=28 \mathrm{~cm}$
i.e. $3 / 4 \times 28=$ Area for $A R B$

$$
=21 \mathrm{~cm}
$$

i.e. $1 / 2 \times 8 \times h=21$

$$
h=5.25
$$

4.

- Constructing of 90°
- Location of C 4 cm away from B.
Completing $\triangle A B C$ Construction of Base angles $45^{\mathbf{0}}$.
Location of P on major arc APB
Bisecting AB to locate P 12 cm away
Calculation of maximum
area of $\triangle A P$
B. BI

BI
$M P=12 \mathrm{~cm}$
Ar
ii) Yes
6.
(a)

b) $\angle P Q R=26^{\circ}+1^{\circ}$
d) $4.9+0.1 \mathrm{~cm}$
e) $A T=u=8.7 \mathrm{~cm}$
f) $\angle A Q R=37+1$

7.

$\Varangle A C B=53 \pm 1^{\circ}$
(c) 2 sides bisector $\underline{1}$

Circle drawn radius $4.4 . \pm 0.1$
(d) Bisect 千 $A C B$

Bisection line to cut the circle to identify P
(a) $A B=7 \mathrm{~cm}, B C=8 \mathrm{~cm}$

千 PBC measure \equiv
(b) $A C=7.6 \pm 0.1 \mathrm{~cm}$

$$
\Varangle A B C=53^{\circ} \pm 0.1
$$

(c) Perpendicular bisectors of any two sides.

Circle drawn
Radius $=4.4 . \pm 0.1 . \mathrm{cm}$
(d) $\Varangle A C B$ bisected

Bisection line drawn to cut circle at P

$$
\Varangle B P C=\Varangle B A C=67^{\circ}
$$

$$
\Varangle P B C=88 \pm 0.1^{\circ}
$$

8. B1-Line AC

BlLine $A B$
B1 AD
B3 - Drawing correct circle
B2- Tangent correctly drawn
9.
a) B1 for constructing 15

B1 for constructing 75
B1 for completing triai
B1 for $A C=8.8 \pm 0.1$
(b)
(i) B1For locating locus centre B1 for locus of X
(ii) B1 for constructing arcs 6.8 cm from $4 C$

B1 for locus Y
(c)B2 for shading the locus of P

