2. Linear motion

1. Distance covered by Kinyua in $1^{2} / 3 h r s$

$$
=5 \times 90=150 \mathrm{~km}
$$

Distance traveled by Nyaboke during the rest $=\left(\frac{1}{3} \times 120\right)=40 \mathrm{~km}$

$$
\begin{aligned}
\frac{x}{90}=\frac{390-x}{120} & \Rightarrow 120 x=90(390-x) \\
& =167.1 \mathrm{~km}
\end{aligned}
$$

Time $=\frac{167.1}{90}=1.86$
$8.33+1.86=10.19 ;$ they met at $\quad=10.11$ a $\cdot \mathrm{m}$
$580-(150+167.1)=262.9 \mathrm{~km}$ from M
Before the rally driver started, Nyaboke had traveled for 1 1/2 hrs
$(3 / 2 \times 120)=180 \mathrm{~km}$

$$
\frac{x}{120}
$$

$$
=\frac{x+180}{80}
$$

$180 x-120 x=21600$

$$
x=360 \mathrm{~km}
$$

Distance from $K=580-(180+360)$

$$
x=40 \mathrm{~km}
$$

Time $=\frac{540}{180}=3 \mathrm{hrs}$
$(9.30+3 h r s)=12.30 \mathrm{p} \cdot \mathrm{m}$
2. Distance covered by the car after $15 \mathrm{~min}=(1 / 4 \times 80) \mathrm{km}=20 \mathrm{~km}$

Distance covered together $=130 \mathrm{~km}$
Relative speed $=(80+40)=120 \mathrm{~km} / \mathrm{h}$
Time taken to meet

$$
\begin{aligned}
& =(\underline{130}) \mathrm{hrs} \\
& 120 \\
& =1 \mathrm{hr} 5 \mathrm{~min}
\end{aligned}
$$

Time they met $=10: 15 \mathrm{a} . \mathrm{m}+$

$$
\frac{1: 05}{11: 20} \mathrm{a} . \mathrm{m}
$$

3. . a) $1 / 2 \times 50 h+1 / 2 \times 100 h+150 h=2700$

$$
\begin{aligned}
225 h & =2700 \\
H & =\frac{2700}{225}=12 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Maximum speed $=\frac{12 \times 60 \times 60}{1000}$
b) Acceleration $=12 / 50 \mathrm{~m} / \mathrm{s}$

$$
=6 / 25 \mathrm{~m} / \mathrm{s}
$$

c) $1 / 2 \times 50 \times 6$

150 m
d) Time for half of journey
$1 / 2 \times 12(50+t+t)=1 / 2 \times 2700$

$$
\begin{aligned}
6(50+2 t) & =1 / 2 X 2700 \\
50+2 t & =225 \\
T & =\frac{225-50}{2}=87.5
\end{aligned}
$$

$$
=50+87.5=137.5 \mathrm{sec}
$$

4. Time taken at 10 km

$$
=45 / 10=4.5 \mathrm{hrs}
$$

Time taken at $15 \mathrm{~km} / \mathrm{hr}$
$45 / 15=3 h r s$
Total time taken $=(4.5+3)=7.5$
$(4.5+3)=7.5 \mathrm{hrs}$
Average speed

$$
={ }^{90} / 7.5
$$

$=12 \mathrm{~km} / \mathrm{hr}$
5. $D=\underset{4}{5} \times 80+\underline{50} 1000$
$=100.05 \mathrm{~km}$
Speed $=120-80=40 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
T=\quad \underline{D} & =\frac{100.05}{40} \\
& =2.50125 \text { hours }
\end{aligned}
$$

(b) $D=S x T=120+\frac{100.05}{4000}+\frac{199}{800}$

$$
\begin{aligned}
& =\frac{120 \times 11000}{40000} \\
& =330 \mathrm{~km}
\end{aligned}
$$

(c) Total time $=\underline{330}$

$$
=4^{1} / 8 h r s
$$

Time lapse $=4 \frac{1}{8}-\frac{5}{4}+\frac{100.05}{40000}+\frac{199}{800}$
$=\frac{41}{8}-4$

$$
={ }^{1} / 8 h r s
$$

6. a) Distance traveled by bus before the matatu started off the journey is

$$
\begin{aligned}
\text { Distance } & =\text { speed } \times \text { time } \\
& =60 \times 21 / 2 \\
& =150 \mathrm{~km}
\end{aligned}
$$

Relative speed $=100-60=40 \mathrm{~km} / \mathrm{hr}$
The matatu would cover the bus head start of 150 km in $150 / 40 \mathrm{hrs}=3.75 \mathrm{hrs}=3 \mathrm{hrs} 45 \mathrm{~min}$
\therefore The matatu will overtake the bus after 3 hrs 45 minutes
This will be $1: 15+3: 45=5.00 \mathrm{pm}$
b) Time taken by the matatu to complete the remaining $350 \mathrm{~km}=350 / 100=31 / 2 \mathrm{hrs}$ $=3$ hours 30 minutes

Time taken by the bus to complete the remaining 350
$={ }^{350} / 60=5 \%$ hrs $=5$ hours 50 minutes
Matatu waits for $5 \mathrm{hr} 50 \mathrm{~min}-3 \mathrm{hr} 30 \mathrm{~min}=2 \mathrm{hrs} 20 \mathrm{~min}$
7. Total distance $=100+140+150=490$

Total speed $=88+164=252 \mathrm{~km} / \mathrm{hr}$
$252 \mathrm{~km} / \mathrm{hr}$ into $\mathrm{m} / \mathrm{h}=\underline{252 \times 1000}=70 \mathrm{~m} / \mathrm{h}$ 3600

Time taken $={ }^{490} / 70=7 \mathrm{sec}$
8.

$$
\begin{aligned}
& \text { Distance }=(5+15) \mathrm{m}=20 \mathrm{~m} \\
& S \Rightarrow \text { Bus }=40 \mathrm{~km} / \mathrm{h} \\
& \text { Trailer }=x \mathrm{~km} / \mathrm{h} \\
& \text { Relative speed }=(40-x) \mathrm{km} / \mathrm{h} \\
& T=4.8 \text { sec. } \quad=\frac{4.8 \mathrm{~h}}{3600} \\
& S=\underline{D} \\
& (40-x)=\underline{0.02} \\
& \qquad \begin{array}{l}
\frac{\underline{0}}{\underline{48}} \\
\simeq \underline{0.02} \\
48 \\
=15 \mathrm{~km} / \mathrm{h} \\
40-x=15 \\
x=25 \mathrm{~km} / \mathrm{h}
\end{array}
\end{aligned}
$$

9. L.C.M $=2^{4} \times 3^{2} \times 5^{3}=1800$

GC.D. $=2 \times 3 \times 5^{2}=150$
10. Total distance $=60 \mathrm{~cm}$

Total time taken $=3^{1} / 5 \mathrm{hrs}$
Let speed in still water be $x \mathrm{~km} / \mathrm{h}$
Speed upstream $=(x-5) \mathrm{km} / \mathrm{h}$
Speed downstream $=(x+5) \mathrm{km} / \mathrm{h}$
$\frac{30}{x-5}+\frac{30}{x+5}=\frac{16}{5}$
$30 x-150+30 x+150=\underline{16}\left(x^{2}-25\right)$
$300 x=16 x^{2}-400$
$x=-5 / 4$ or 20
\therefore Speed in still water is $20 \mathrm{~km} / \mathrm{hr}$
11. When David left, Ojwang had covered $15 x^{3} / 2=22.5 \mathrm{~km}$.
a) (i) Remaining dist. $=40-22.5=17.5 \mathrm{~km}$

Relative speed $=15+25=40 \mathrm{~km} / \mathrm{h}$
Time taken before meeting $=\frac{17.5}{40}=0.4375 \mathrm{hrs}$
Ojwang covered $15 \times 0.437=5.5625 \mathrm{~km}$

Distance from Ojwang's house $=22.5+6.5625$ $=\underline{29.0625 \mathrm{~km}}$
(ii) $0.4375=26 \min 15 \mathrm{sec}$
\therefore They met at $10.30+26.15$

$$
=10.56 .15 \mathrm{am} .
$$

(iii) $40-29.0625 \checkmark=\underline{10.9375 \mathrm{~km} \sqrt{ }}$
b) \quad Time take $=\frac{10.9375}{12} \sqrt{ }=0.9115 \mathrm{hrs}$

$$
=54 \mathrm{~min}, 41 \mathrm{sec} .
$$

They arrived at $10.56 .15+54.41+10 \mathrm{~min}$

$$
=\underline{12.00 .56 \mathrm{pm}} . \sqrt{V}
$$

12. (a) In 1Ominutes Kamau has travelled
$\frac{10}{60} \times 24=6 \mathrm{~km}$
Distance left $=42-6=36 \mathrm{~km}$
Relating speed $=24+50.4 \mathrm{k} / \mathrm{hr}$

$$
=74.4 \mathrm{~km} / \mathrm{hr}
$$

Time taken to meet $=\underline{42} \quad=0.565 \mathrm{hrs}$

$$
74.4
$$

$$
=34 \text { minutes }
$$

Time for meeting is

$$
6.10
$$

$$
\frac{34}{6.44 a . m}
$$

$\underline{34} \times 50.4=28.56 \mathrm{~km}$ from R or 13.44 from S 60
(b) Kamau arrival time

$$
\begin{aligned}
& \frac{42 \mathrm{~km}}{24 \mathrm{~km} / \mathrm{hr}}=1.75 \mathrm{hrs} \\
& \text { lhr } .45 \text { minutes } \\
& \text { 6.00a.m } \\
& \frac{1.45}{7.45 \mathrm{a} . \mathrm{m}}
\end{aligned}
$$

(c) Mrs Ronoh speed $=\underline{D}$

$$
\begin{aligned}
& \bar{T} \\
& =50.4 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Twice $=50.4 \times 2=100.8$
7.00a.m, Mr. Kamau covered $=1 \times 24=24 \mathrm{~km}$

Retain speed $=100.8-24=76.8 \mathrm{~km} / \mathrm{hr}$
So $24=8.75$
76.8

He was overtaken at

At distance of $D=S x t$

$$
=\frac{100.8 \times 189.75}{60}
$$

31.5 km from S or 10.5 km from R
13. i) A gains on B at the rate of $(72-56) \mathrm{Km} / \mathrm{hr}$ or $16 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& \therefore \text { in } 1 \text { hr A gains on B } 16 \mathrm{~km} \\
& \text { In } 545 \text { A gains on B } \\
& \frac{16 \times 1000 \times 54 \mathrm{~m}}{60 \times 60}=240
\end{aligned}
$$

The sum of the lengths of the two trains is 240 m but the length of the first train is 100 m The length of the second train is 140 m
ii) Relative speed $=(72+56) \mathrm{km} / \mathrm{h}=128 \mathrm{~km} / \mathrm{hr}$

Distance between A and B decrease at the rate of $128 \mathrm{~km} / \mathrm{hr}$
The distance decreases by 240 m

$$
\begin{aligned}
\frac{60 \times 60 \times 240}{128 \times 1000} & =\frac{27}{4} \quad \text { seconds } \\
& =63 / 4 \mathrm{~s}
\end{aligned}
$$

14. (a) Time $=\underline{D}$

$$
\begin{gathered}
\quad \begin{array}{l}
S \\
= \\
x \\
x h r s
\end{array}
\end{gathered}
$$

(ii) Time $=\underline{7}$

$$
x+\overline{2} 4 \quad h r s
$$

(b) $\frac{5}{x}-\frac{36}{60}=\frac{7}{x+24}$
$\frac{7}{x+24}=\frac{25-3 x}{5 x}$
$35 x=25 x-3 x^{2}+600-72 x$
$3 x^{2}+82 x-600=0$
$(3 x+100)(x-6)=0$
$x=\frac{-100}{3}$ or 6
His speed $=6 \mathrm{~km} / \mathrm{hr}$
(c) Time $=S \times T$

$$
=\underline{5} \times 60
$$

$=50 \mathrm{mins}$
15. a) Relative speed $=80-60$

$$
=20 \mathrm{~km} / \mathrm{h}
$$

$$
\begin{aligned}
\text { Time }= & \frac{40}{20} \mathrm{hrs} \\
& =2 \mathrm{hrs}
\end{aligned}
$$

(b) $1.50 \mathrm{p} . \mathrm{m} .=13.50 \mathrm{hrs}$.

Time $=13.50+2=15.50 \mathrm{hrs}$

Distance $=400 \mathrm{~km}$
Time taken $=\underline{400}=10=3 \mathrm{hrs} 20 \mathrm{~min}$ 120

$$
8.30+3 \mathrm{hrs} 20 \mathrm{~min}=11: 50 \mathrm{a} . \mathrm{m}
$$

(b) at 8.30a.m distance covered by bus $=1 / 2 \times 80=40 \mathrm{~km}$

Dist. Left $=360 \mathrm{~km}$ speed $=200 \mathrm{~km} / \mathrm{h}$
Time taken $=\underline{360}=1 \mathrm{hr} 48 \mathrm{mins}$

$$
200
$$

They met at 8:30+1hr 48mins

$$
=10: 18 a \cdot m
$$

(c) $8-10.18$ a.m is 2 hrs 18 mins distance $=2 \times 80+\underline{18} \times 80$
$=160+24 \mathrm{~km}=184$ from Nairobi
(d) car arrived in Nairobi after 3hrs 20mins

Bus traveled a time of 3hrs 20mins +30 mins
3hrs 50mins
Dist. $=3 \times 80+50 \times 80=240+66^{2} / 3$
60
Distance from Kisumu $=93^{1} / 3 \mathrm{~km}$
17. Total distance $=25 \mathrm{~m}$

Relative speed $=54 \mathrm{~km} / \mathrm{hr}$
To $\left.\mathrm{m} / \mathrm{s}=\left(\frac{54 \times 1000}{60 \times 60}\right]=15 / \mathrm{ms}\right\}$
Time they met $=\left(\frac{25}{15}\right)$

$$
=1^{2} / 3 \mathrm{sec}
$$

