1. Graphical Methods

1. The equation of a circle is given as
$2 x^{2}+2 y^{2}-8 x+5 y+10=0$. Find the radius of the circle and the coordinates of its centre. (3 mks)
2. The equation of a circle is given by $x^{2}+4 x+y^{2}-5=0$. Find the centre of the circle and its radius.
3. The equation of a circle is $x^{2}+y^{2}+6 x-10 y-2=0$. Determine the co-ordinates of the centre of the circle and state its radius
4. In the diagram below ABE is a tangent to a circle at B and DCE is a straight line. If $\mathrm{ABD}=60^{\circ}, \mathrm{BOC}=80^{\circ}$ and O is the centre of the circle, find with reasons $\angle \mathrm{BEC}$

5. Obtain the centre and the radius of the circle represented by the equation:
$x^{2}+y^{2}-10 y+16=0$
6. Complete the table below, for the function $y=x^{3}+6 x^{2}+8 x$

x	-5	-4	-3	-2	-1	0	1
x^{3}	-125		-27	-8		0	1
$6 \mathrm{x}^{2}$		96	54		6	0	6
8 x	-40		-24			0	8
y			3	0		0	15

(a) Draw a graph of the function $y=x^{3}+6 x^{2}+8 x$ for $-5 \leq x \leq 1$ and use the graph to estimate the roots of the equation $x^{3}+6 x^{2}+8 x=0$
(b) Find which values of \mathbf{x} satisfy the inequality $x^{3}+6 x^{2}+8 x-1>0$
7. Sketch the curve of the function $y=x^{3}-3 x+2$ showing clearly minimum and maximum points and the y - intercept.
8. Show that $4 y^{2}+4 x^{2}=12 x-12 y+7$ is the equation of a circle, hence find the co-ordinates of the centre and the radius
9. Two variables R and P are connected by a function $\mathrm{R}=\mathrm{KP}{ }^{\mathrm{n}}$ where K and n are constants. The table below shows data involving the two variables

P	3	3.5	4	4.5	5
R	36	49	64	81	100

(a) Express $\mathbf{R}=\mathbf{K} \mathbf{P}^{\mathbf{n}}$ in a linear form
(b) Draw a line graph to represent the information above
(c) Find the values of constants \mathbf{K} and \mathbf{n}
(d) Write down the law connecting \mathbf{R} and \mathbf{P}
(e) Find the value of \mathbf{P} when $\mathbf{R}=\mathbf{9 0 0}$
10. A circle of radius 3 cm has the centre at $(-2,3)$. Find the equation of the circle in the form of $x^{2}+y^{2}+P x+q y+c=0$
11. In an experiment, the values of two quantities V and T were observed and the results recorded as shown below.

V	0	2	4	6	8	10
T	0.49	0.30	0.24	0.20	0.16	0.137

It is known that \mathbf{T} and \mathbf{V} are related by a law of the form $T=\frac{a}{b+V}$
where \mathbf{a} and \mathbf{b} are constants.
a) Draw the graph of \underline{I} against V

T
b) Use your graph to find;
i) The values of \mathbf{a} and \mathbf{b}.
ii) \mathbf{V} when $\mathbf{T}=0.38$
iii) \mathbf{T} when $\mathbf{V}=4.5$
12. Find the equation of the tangent to the curve $y=2 x^{3}+x^{2}+3 x-1$ at the point ($1,-5$) expressing you answer in the form $\mathrm{y}=\mathrm{m} x+\mathrm{c}$
13. Given that :- $\quad 243=(81)^{-1} \times(1 / 27)^{x}$ determine the value of x
14. Show that $3 x^{2}+3 y^{2}+6 x-12 y-12=0$ is an equation of a circle hence state the radius and centre of the circle
15. (a) Fill in the table below for the function $y=-6+x+4 x^{2}+x^{3}$ for $-4 \leq x \leq 2$

x	-4	-3	-2	-1	0	1	2
-6	-6	-6	-6	-6	-6	-6	-6
x	-4	-3	-2	-1	0	1	2
$4 x^{2}$			16			4	
x^{3}							
y							

(b) Using the grid provided draw the graph for $y=-6+x+4 x^{2}+x^{3}$ for $-4 \leq x \leq 2$
(c) (i) Use the graph to solve the equations:-
(i) $x^{3}+4 x^{2}+x-4=0$
(ii) $-6+x+4 x^{2}+x^{3}=0$
(iii) $-2+4 x^{2}+x^{3}=0$
16. The table below shows the results obtained from an experiment to determine the relationship between the length of a given side of a plane figure and its perimeter

Length of side $\mathbf{t}(\mathrm{cm})$	1	2	3	4	5
Perimeter P (cm)	6.28	12.57	18.86	21.14	31.43

(a) On the grid provided, draw a graph of perimeter \mathbf{P}, against 1
(b) Using your graph determine;
(i) the perimeter of a similar figure of side 2.5 cm
(ii) the length of a similar figure whose perimeter is 9.43 cm
(iii) the law connecting perimeter p and the length i
(c) If the law is of the form $\mathbf{P}=\mathbf{2 k} \mathbf{~}+\mathbf{c}$ where \mathbf{k} and \mathbf{c} are constants, find the value of \mathbf{k}
17. In an experiment with tungsten filament lamp, the reading below of voltage (V) current (I), power (P) and resistance (R) were obtained. It was established that \mathbf{P} was related to \mathbf{R} by a law $P=a R^{n}-0.6$. Where \mathbf{a} and \mathbf{n} are constants.

\mathbf{V}	1.30	2.00	2.80	4.40	5.70
\mathbf{I}	1.50	1.80	2.10	2.50	2.90
\mathbf{P}	0.73	2.05	3.28	7.44	10.62
\mathbf{R}	0.89	1.13	1.33	1.78	1.99

Plot a suitable line graph and hence use it to determine the value of \mathbf{a} and \mathbf{n}
18. Find the gradient of a line joining the centre of a circle whose equation is $\mathbf{x}^{2}+\mathbf{y}^{2}-\mathbf{6 x}=\mathbf{3}-\mathbf{4 y}$ and a point $\mathrm{P}(6,7)$ outside the circle..
19. a) Complete the table below for the function $\mathbf{y}=-\mathbf{x}^{3}+\mathbf{2} \mathbf{x}^{2}-\mathbf{4 x}+\mathbf{2}$.

\mathbf{x}	$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$-\mathrm{x}^{3}$	27	8		0		-8		
$2 \mathrm{x}^{2}$	18	8	2	0				
-4 x		8		0				-16
2	2	2	2	2	2	2	2	2
y		26		2		-6		-46

b) On the grid provided below draw the graph of $-x^{3}+2 x^{2}-4 x+2$ for $-3 \leq x \leq 4$.
c) Use the graph to solve the equation $-\mathbf{x}^{3}+\mathbf{2} \mathbf{x}^{2}-\mathbf{4 x}+\mathbf{2}=\mathbf{0}$.
d) By drawing a suitable line on the graph solve the equation. $-\mathbf{x}^{\mathbf{3}}+\mathbf{2} \mathrm{x}^{2}-\mathbf{5 x}+\mathbf{3}=\mathbf{0}$.
20. Determine the turning point of the curve $y=4 x^{3}-12 x+1$. State whether the turning point is a maximum or a minimum point.
21. (a) Complete the table below for the equation of the curve given by $\mathbf{y}=\mathbf{2} \mathbf{x}^{\mathbf{3}}-\mathbf{3} \mathbf{x}^{\mathbf{2}}+\mathbf{1}$

\mathbf{X}	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3
$\mathbf{2 \mathbf { x } ^ { 3 }}$	-16		-2		0		2		16		
$\mathbf{- 3 \mathbf { x } ^ { 2 }}$	-12			0.75	0	-0.75					-27
$\mathbf{1}$	1				1						
\mathbf{y}	-27	-12.5			1						13.5

(b) Use the table to draw the graph of the function $\mathbf{y}=\mathbf{2} \mathbf{x}^{3}-\mathbf{3} \mathbf{x}^{2}+\mathbf{1}$
c) Use your graph to find the values of x for :-
(i) $\mathrm{y}>0$
(ii) The roots of the equation $2 x^{3}-3 x^{2}+1=0$
(iii) $2 x^{3}-3 x^{2}=9$
22. Find the radius and the centre of a circle whose equation is :

$$
2 x^{2}+2 y^{2}-6 x+10 y+9=0
$$

