1. Formulae and variation

1. Make U the subject of the formula

$$
X=\frac{U^{2} V}{U^{2} 2 W}
$$

2. A quantity P varies partly as t and partly as the square of t . When $\mathrm{t}=20, \mathrm{P}=45$ and when $\mathrm{t}=$ $24, \mathrm{P}=60$. Find P when $\mathrm{t}=32$.
3. A quantity V is partly constant and partly varies inversely as the square of W . If $\mathrm{W}=2$ when $\mathrm{V}=$ 14 and $\mathrm{W}=3$ when $\mathrm{V}=9$. write an equation connecting V and W and hence find V when $\mathrm{W}=6$. (4mks)
4. Given that $T=\frac{1}{2} \sqrt{\frac{2}{x+y}}$ express y in terms of T and X .
5. Make t the subject of the formula.

$$
\mathrm{x}=\sqrt{\frac{1+\mathrm{kt}}{\mathrm{kt}-1}}
$$

6. Three quantities P, Q and R are such that P varies directly as the cube of Q and inversely as the square of R.
a) Given that $\mathrm{P}=16$ when $\mathrm{Q}=2$ and $\mathrm{R}=3$. Determine the value of R when $\mathrm{P}=288$ and $\mathrm{Q}=4$ marks)
b) Q decreases by 30% while R increases by 40%. Find the percentage decrease or increase in P .
(5 marks)
7. Make P the subject of the formula in $x=\sqrt{\frac{y(p-y)}{p-1}}$
8. $\quad \mathrm{P}$ varies directly as Q and inversely as the square root of R .

Find the percentage decrease in P if Q decreases by 4% when R increases by 44%.
9. Given that $q=\frac{m+1}{2 m-1}$ express $\frac{3 q-1}{3 q+1}$ in terms of m in simplified form
10. P varies as the square of R. R. varies as the square of T. When $P=18, R=3$ and $T=5$. Express P in terms of T hence find P when $\mathrm{T}=10$.
11. Make r the subject of the formula.

12. X varies as the cube of Y and inversely as square root of $\mathrm{Z}, \mathrm{X}=6$ when $\mathrm{Y}=3$ and $\mathrm{Z}=25$.
(a) Find;
(i) An expression connecting $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
(ii) X when $\mathrm{Y}=7$ and $\mathrm{Z}=9$
(iii) Y when $\mathrm{X}=8$ and $\mathrm{Z}=16$
b) If Y is increased by 20% and Z is decreased by 36%, find the percentage increase in X
13. Make \mathbf{b} the subject of the formula;

$$
K=\frac{a b}{b-a}
$$

14. Find a quadratic equation whose roots are $2.5+\sqrt{3}$ and $2.5-\sqrt{3}$, expressing it in the form $a x^{2}+b x+c=0 \quad$ Where a, b and c are integers
15. A quantity \mathbf{Z} varies directly as the square of x and inversely as the square root of y. If \mathbf{x} increases by 20% and \mathbf{y} decreases by 36%, find the percentage change in \mathbf{Z}
16. The fourth terms of a G.P is 48 and the seventh term is 384 . Find the common ratio and hence calculate the sum of the first six terms
17. A quantity \mathbf{P} varies directly as the square of \mathbf{Q} and inversely as quantity \mathbf{R}. If $\mathbf{P}=2$ when $\mathbf{Q}=4$ and $\mathbf{R}=6$, find \mathbf{P} when $\mathbf{Q}=8$ and $\mathbf{R}=4$
18. \mathbf{B} varies partly as the square of \mathbf{M} and partly as the inverse of $\mathbf{N} . \mathbf{B}, \mathbf{M}$ and \mathbf{N} are such that when $\mathbf{M}=2, \mathbf{N}=1 / 2, \mathbf{B}=96$ while when $\sqrt{\mathbf{M}}=3, \mathbf{N}=2, \mathbf{B}=46$. Write an expression for \mathbf{B} in terms of \mathbf{M} and \mathbf{N}.
19. Solve for \mathbf{x} and \mathbf{y}.

$$
\frac{3 x}{y-1}=1
$$

$$
(2 x+2):(y-5)=1: 2
$$

20. Make \mathbf{x} the subject of the formula.. $\quad P=\left(\frac{x-1}{x+2}\right)$
21. Make \mathbf{d} the subject of the formula given that:-

$$
a^{2}=\sqrt{\frac{1+d^{2}}{b^{2}}+\frac{b}{3}}
$$

22. \mathbf{Z} varies jointly as the square of \mathbf{x} and inversely as the square of \mathbf{y}. When $\mathbf{x}=10$ and $\mathbf{y}=4$ then $\mathbf{z}=15$
(a) Find \mathbf{z} in terms of \mathbf{x} and \mathbf{y}
(b) Find the value of \mathbf{x} when $\mathbf{z}=8$ and $\mathbf{y}=12$
23. A quantity \mathbf{R} partly varies as \mathbf{n} and partly as the square root of \mathbf{n}. When $\mathbf{n}=9 \mathbf{R}=42$ and when $\mathbf{n}=25 \quad \mathbf{R}=100$. Find \mathbf{R} when $\mathbf{n}=16$.
24. Make \mathbf{b} the subject of the formula.

$$
a=\frac{b d}{\sqrt{b^{2}+d}}
$$

25. \mathbf{P} varies party as \mathbf{Q} and partly as the square root of \mathbf{Q}. When $\mathbf{Q}=4, \mathbf{P}=22$ and when $\mathbf{Q}=9, \quad \mathbf{P}=42$. Find the value of \mathbf{P} when $\mathbf{Q}=25$.
26. Make \mathbf{C} the subject of the formula

$$
b=\sqrt{k-a C}
$$

hence find the value of \mathbf{C} when $\mathbf{K}=1, \mathbf{a}=4$ and $\mathbf{b}=2$
27. The velocity of water flowing through a pipe is inversely proportional to the square of the radius of the pipe. If the velocity of the water is $30 \mathrm{~cm} / \mathrm{s}$ when the radius of the pipe is 2 cm . Find the velocity of water when the radius of the pipe is 4 cm
28. Make x the subject of the formula

$$
P=3 \sqrt{\frac{x y}{z+x}}
$$

29. Three quantities \mathbf{x}, \mathbf{y} and z are such that \mathbf{x} varies partly as y and partly as the inverse of the square of Z. When $\mathbf{x}=6, \mathbf{y}=3$ and $z=2$. When $x=8, y=5$ and $z=1$. Find the value of x when $y=10$ and $z=8$
30. The eleventh term of an AP is four times the second term. If the sum of the first seven terms of the AP is 175 , find the first term and the common difference
31. The resistance of an electrical conductor is partly constant and partly varies as the temperature. When the temperature is $20^{\circ} \mathrm{C}$, the resistance is 55 ohms . When the temperature is $28^{\circ} \mathrm{C}$, the resistance is 58 ohms. Find the resistance when the temperature is $60^{\circ} \mathrm{C}$
32. Expand $1-\frac{1}{-5}$
$(2 \mathrm{x})^{-1}$ up to the term in x^{3}. Hence or otherwise evaluate $(0.98)^{5}$ to $4 \mathrm{~d} . \mathrm{p}$
