MARKING SCHEME

1. (a) (i) to the left; 1
 (ii) current produces magnetic field/coil becomes magnetic;
 cause of movement in correct context;
 [Reject attraction/repulsion] 2

 (b) oscillates/vibrates/moves left then right/eq; 1

 (c) \[v = f \times \lambda; \]
 [In any correct form]
 \[= 800 \text{ (Hz)} \times 0.4 \text{ (m)}; \]
 \[= 320 \text{ (m/s)}; \]
 [Bald correct answer scores 3 marks] 3

2. (a) (i) voltage has both + and – values/either direction; 1
 (ii) amplitude - (±) 2.6 (V);
 period - 0.024 (s); 2
 (iii) A calculation to include:
 \[f = \frac{1}{T} = \frac{1}{0.024\text{s}}; \]
 \[= 41.7 \text{ Hz}; \text{[Allow ecf from (ii)]} \]

 (b) (i) An explanation to include:
 1. appreciation that the coil is in the magnet’s field;
 2. field is changing/field lines cut; 2
 (ii) increases (the induced voltage and) the brightness;
 increased rate of change of field/cut lines more often/OWTTE;
 [Accept a reasoned energy argument] 2
 (c) A suggestion to include:
 1. to produce/create d.c./diode allows current/electricity to pass in one direction
 only/conducts only in one direction;
 2. prevents discharge of battery (through coil); 2

3. (a) (i) changing polarity, 1
 (ii) Any two from:
 • stronger magnet;
 • more turns;
 • increase speed rotation;
 • placing coil on soft iron core; 2

 (b) (i) An explanation to include:
 • higher V, less I; 1
• less I, lower heating effect; 2

(ii) \[
\frac{N_p}{N_s} = \frac{V_p}{V_s} = \frac{25000}{400000} = \frac{1}{16} \left(\frac{16}{1} \text{ if secondary to primary} \right); \]

(c) Advantage: less resistance; 2
Disadvantage: heavier; 2

4. (a) (i) An explanation to include:
1. force produced;
2. because of the magnetic fields of coil and permanent magnet; 2
(ii) moves to the left/backswards; 1
(iii) larger current/stronger magnet/more coils/weaker spring; 1
(b) to return the needle to zero when current stopped;
to stop needle moving too far for (small) currents; 2

5. (a) (i) A continuation of the graph to show:
1. negative arc;
2. completes cycle at 0.4 second;
3. quality sine curve; 3
(ii) A sketch to show:
1. smaller maximum voltage;
2. longer time period; 2
(b) (i) A calculation to include:
1. \[
\frac{N_p}{N_s} = \frac{V_p}{V_s} \]
\[
\frac{3200}{N_s} = \frac{240}{30}; \]
2. \[3200 = 8 \times N_s;\]
3. \[N_s = 400;\] 3
(ii) A calculation to include:
1. \[V \times I \times t = 30 \times 0.4 \times 1;\]
2. \[12 \text{ (J);}\] 2
(iii) A calculation to include:
1. \[
\text{efficiency} = \frac{\text{energy out}}{\text{energy in}} = \frac{12}{15}; \text{[Allow ecf from part (ii)]} \]
\[
= 80\% \ (0.8);\] 3

[10] [6] [13]
6. (a) (i) \[\frac{V_P}{V_S} = \frac{N_P}{N_S}; \]
 [Must be in equation using symbols or words]
 (ii) A calculation to include:
 1. \[\frac{15000}{N_S} = \frac{240}{12}; \]
 2. \[N_S = 750; \]
 [If 1500 used instead of 15000 to give 75 allow 1 mark]
 [75 with no evidence scores 0 marks]

(b) A calculation to include:
 1. current = \[\frac{E}{V t}; \]
 \[[E = V \times I \times t \text{ scores 0 marks}] \]
 2. \[\frac{250}{240 \times 10}; \]
 3. \[= 0.104 / 0.1 \text{ A}; \]
 [Bald, correct answer scores 3 marks]
 [0.1 with no units – 2 marks]
 [1.04 / 1 \text{ A – 1 mark}]
 [Using \(P = VI \) route is acceptable]

(c) (i) Calculation to include:
 1. \[\frac{225}{250}; \]
 2. \[= 0.9 / 90 \text{ %}; \]
 [Accept eddy currents in the core for 2 marks]
 [Accept hysteresis losses in the core for 2 marks]
 [Accept sound due to mains hum for 2 marks]
 [Allow resistance in wires for 1 mark]
 [heat / light / sound in the wires scores 0 marks]