NEWTONS LAWS OF MOTION

1.

$$
\begin{aligned}
\text { Change } & =m v-(-\mathrm{mv}) \\
& =0.1 \mathrm{~kg} \times 20-(-0.1 \times 0.1 \times 30)[1 \mathrm{~m}] \\
& =5 \mathrm{Kgm} / \mathrm{s}[1 \mathrm{~m}]
\end{aligned}
$$

2.

(a) (i) any mention of force or weight ignore mass C 1

Force to left > force to right)
OR resultant force) any 1 A1
OR unbalanced force)
OR weight > friction)
(ii) to overcome/compensate for friction/resistance B1
(b) $2 / 2.5$ or $4 / 5$ etc. or F / a or $F=$ ma C1
$0.8 \mathrm{~kg} \mathrm{A1}$
(c) $0.7 / 0.8$ e.c.f. from (b) B1
$0.875(\mathrm{~m} / \mathrm{s} 2)$ e.c.f. from (b) could be scored on table (no unit needed) B1
(d) (i) $v=$ at or $0.5 \times 1.2 \mathrm{C} 1$
$0.6 \mathrm{~m} / \mathrm{s} \mathrm{A} 1$
(ii) any velocity \times time or speed \times time C1
0.36 m c.a.o. (note: 0.72 m gets C1, A0) A1 [11]
3.

A
4.

The diagram illustrates an elastic collision between two spheres, A and B, of equal mass.

Sphere A is tied to the end of a long vertical thread and pulled to one side until it has risen a distance of 10 cm . It is then released and comes to rest when it strikes the sphere B
which is resting on a smooth flat support.
Sphere B travels a horizontal distance d before it hits the ground after falling 10 cm .
Calculate the speed of A as it strikes B.
Gain of kinetic energy = loss in potential energy
$v=\sqrt{2 g h}$
(1)
$\sqrt{2 \times\left(9.8 \mathrm{~m} \mathrm{~s}^{-2}\right) \times(0.10 \mathrm{~m})}$
Speed $=1.4 \mathrm{~m} \mathrm{~s}^{-1}$
(4 marks)
How long does B take to fall 10 cm ?
$t=\sqrt{2 s / g}$
$=\sqrt{2 \times(0.10 \mathrm{~m}) /\left(9.8 \mathrm{~m} \mathrm{~s}^{2}\right)}$
Time $=0.14 \mathrm{~s}$

What is the speed of B just after the collision?
$1.4 \mathrm{~m} \mathrm{~s}^{-1}$ (1)

Calculate the distance d
Distance $=$ speed \times time $=\left(1.4 \mathrm{~ms}^{-1}\right)(0.14 \mathrm{~s})$
Distance $=0.20 \mathrm{~m}$

Explain briefly why B drops a distance of 10 cm much more quickly than A.
B is in free fall
(1)
while the downwards acceleration of A is inhibited by the upward tension in the string (1)
5.
(a) (i) momentum is mass \times velocity; 1
(ii) impulse is force \times time / change in momentum;

In each case allow an equation, with symbols explained.
(b) (i) $\quad D p=450(18-13)$;
$=2250 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
(ii) idea of equating Dp to change in momentum of water;

$$
m=\frac{2250}{19}=118 \mathrm{~kg}(» 120 \mathrm{~kg})
$$

(iii) time of trolley in tank $=\frac{9.3}{15.5}=0.60 \mathrm{~s}$;

$$
a=\frac{(18-13)}{0.60} \quad \text { or } \quad \text { force }=\frac{2250}{0.60}(=3750 \mathrm{~N}) ;
$$

$$
a=8.3 \mathrm{~m} \mathrm{~s}^{-2}
$$

$$
a=\frac{3750}{450}=8.3 \mathrm{~m} \mathrm{~s}^{-2} \text {; }
$$

or

$$
\begin{aligned}
& v^{2}=u+2 a s \\
& a=\frac{13^{2}-18^{2}}{2 \times 9.3} ; \\
& a=8.3 \mathrm{~m} \mathrm{~s}^{-2} ;
\end{aligned}
$$

(c)
(i) $E_{\mathrm{K}}=\frac{1}{2} m v^{2}$;

$$
\begin{aligned}
& \frac{1}{2} \times 450 \times\left(18^{2}-13^{2}\right) \\
= & 35000 \mathrm{~J}
\end{aligned}
$$

(ii) $E_{\mathrm{K}}=\frac{1}{2} \times 118 \times 19^{2}$

$$
\text { = } 21000 \mathrm{~J} \text {; (allow } 22000 \mathrm{~J} \text { for use of } \mathrm{m}=120 \mathrm{~kg} \text {) }
$$

(d) some water will be thrown "sideways"; this will account for the difference in the kinetic energies; this will not have any momentum in the forward direction / equal masses of water to left and right;
6.
(a) before and after collision there are no forces acting on the objects; from Newton 3 when the two bodies are in contact the forces that they exert on each other are equal and opposite / OWTTE; therefore, the net force on the two balls is always zero; therefore, there is no change in momentum (of the objects) / momentum is conserved;
or
Accept an argument based on change in momentum of each individual object.
eg
from Newton $3 F_{12}=-F_{21}$; (accept statement in words)
$F_{12}=\frac{\Delta p_{1}}{\Delta t}$ and $F_{21}=\frac{\Delta p_{2}}{\Delta t}$;
$\frac{\Delta p_{1}}{\Delta t}=-\frac{\Delta p_{2}}{\Delta t}$;
therefore, $\mathrm{D} p_{1}+\mathrm{D} p_{2}=0$;
(b) the blades exert a force on the air and by Newton's third law the air exerts an equal and opposite force on the blades / air has change in momentum downwards giving rise to a force and from Newton 3 there will a force upwards;
if this force equals the weight of the helicopter;
the net vertical force on the helicopter will be zero / OWTTE;
(c) \quad area $=p 0.7^{2}$;
$=1.5 \mathrm{~m}^{2}$
(d) (i) volume of air per second $=1.5^{\prime} 4.0\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$;
mass $=$ volume ' density $=\left(1.2^{\prime} 1.5^{\prime} 4.0\right)=7.2 \mathrm{kgs}^{-1}$;
No unit error for 7.2 kg .
(ii) momentum per second $=\left(7.2^{\prime} 4.0\right)=29 \mathrm{~N}$;
(e) 29 N ;
(f) recognize that the force on the blades $=\mathrm{Mg}$; to give 3.0 kg ;
7.
(a) when two bodies A and B interact, the force that A exerts on B is equal and opposite to the force that B exerts on A;
or
when a force acts on a body an equal and opposite force acts on another body somewhere in the universe;

Award [0] for "action and reaction are equal and opposite" unless they explain what is meant by the terms.
(b) if the net external force acting on a system is zero; then the total momentum of the system is constant (or in any one direction, is constant);

To achieve [2] answers should mention forces and should show what is meant by conserved. Award [1 max] for a definition such as "for a system of colliding bodies, the momentum is constant" and [0] for "a system of colliding bodies, momentum is conserved".
(c)

arrows of equal length;
acting through centre of spheres;
correct labelling consistent with correct direction;
(d) (i) Ball B:
change in momentum $=M v B$;
hence $F A B \Delta t=M v B$;
(ii) Ball A:
change in momentum $=M(v A-V)$;
hence from Newton 2, FBA $\Delta t=M(v A-V)$;
(e) from Newton $3, F A B+F B A=0$, or $F A B=-F B A$; therefore $-M(v A-V)=M v B$; therefore $M V=M v B+M v A$;
that is, momentum before equals momentum after collision such that the net change in momentum is zero (unchanged) / OWTTE;

Some statement is required to get the fourth mark ie an interpretation of the maths result.
(f) from conservation of momentum $V=v B+v A$; from conservation of energy $\mathrm{V} 2=\mathrm{vB} 2+\mathrm{vA} 2$; if $v A=0$, then both these show that $v B=V$;
or
from conservation of momentum $V=v B+v A$;
from conservation of energy $\mathrm{V} 2=\mathrm{vB} 2+\mathrm{vA2}$;
so, $V 2=(v B+v A) 2=v B 2+v A 2+2 v A v B$ therefore vA has to be zero;
Answers must show that effectively, the only way that both momentum and energy conservation can be satisfied is that ball A comes to rest and ball B moves off with speed V .

