1. Circles -chords and tangents

1. In the figure below not drawn to scale. DC is a tangent to the circle. $\mathrm{DC}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$. Calculate BC.

2.

The figure above shows a circle in which chords $A D$ and $B C$ intersect at G. chords $A B$ and CD produced meet at K .
(a) If $\angle B G D=3 x^{0}$ and $\angle C G D=2 x$, determine the size of $\angle B G A$
(b) Given that $\mathrm{KB}=5 \mathrm{~cm}, \mathrm{KC}=15 \mathrm{~cm}$ and $\mathrm{KD}=7 \mathrm{~cm}$, determine the length of KA (3 mks)
(c) Giving reasons for your answer, show that triangle KDA and KBC are similar (5 mks)
3. The figure below shows a circle with secants ABE and CDE , If $\mathrm{AB}=4 \mathrm{~cm}$ and $\mathrm{BE}=6 \mathrm{~cm}$ and $\mathrm{DE}=$ 4 cm . Find the length of CD.

4. In the figure below, CF is a tangent to the circle. $\mathrm{BC}=3 \mathrm{~cm}, \mathrm{ED}=4 \mathrm{~cm}$ and $\mathrm{DC}=2 \mathrm{~cm}$.

Find:- ${ }^{\text {(Not drawn to scale) }}$
a. $\mathrm{AB}(2 \mathrm{mks})$
b. FC (2 mks)
5. In the figure below angle $\mathrm{BAC}=52^{\circ}$, angle $\mathrm{ACB}=40^{\circ}$ and $\mathrm{AD}=\mathrm{DC}$. The radius of the circle is 7 cm . EF is a tangent to the gircle
(a) Find; giving reasons
(i) angle DCF
(ii) angle AOB (obtuse)
(b) Calculate the area of the shaded segment AGB
6. In the figure below, O is the centre of the circle. Angle $\mathrm{CBA}=50^{\circ}$ and angle $\mathrm{BCO}=30^{\circ}$.

Find the size of the angle BAC

O
30°
A

C
7. In the given figure, O is the centre of the circle and AOBP is a straight line. PT is a tangent to the circle. If $\mathrm{PT}=12 \mathrm{~cm}$ and $\mathrm{BP}=4 \mathrm{~cm}$. find the radius of the circle

8. In the figure below AOD is a diameter of the circle cetre $\mathrm{O} . \mathrm{BC}$ is a chord parallel to AD . FE is a tangent to the circle. OF bisects angle COD . Angle $\mathrm{BCE}=$ angle $\mathrm{COE}=20^{\circ} \mathrm{BC}$ cuts OE at X

Calculate;
(a) angle BOE
(b) angle BEC
(c) angle CEF
(d) angle OXC
(e) angle OFE
9. The figure below shows two pulleys of radii 6 cm and 4 cm with centres \mathbf{A} and B respectively.
$\mathbf{A B}=8 \mathrm{~cm}$. The pulleys are connected by a string PQXRSY

Calculate:

(a) Length PQ
(b) \angle PAS reflex
(c) Length of arc PYS and QXR
(d) The total length of the string PQXRSY
10. a) Two pipes \mathbf{A} and \mathbf{B} can fill a tank in 3 hrs and 4 hrs respectively. Pipe \mathbf{C} can empty the full tank in 6 hrs.
i) How long would it take pipes \mathbf{A} and \mathbf{B} to fill the tank if pipe \mathbf{C} is closed?
ii) Starting with an empty tank, how long would it take to fill the tank with all pipes running?
b) The high quality Kencoffee is a mixture of pure Arabica coffee and pure Robusta coffee in the ratio $1: 3$ by mass. Pure Arabica coffee costs shs. 180 per kg and pure Robusta coffee costs sh 120 per kg. Calculate the percentage profit when the coffee is sold at sh 162 per kg .
11. In the figure below, ABCD is a cyclic quadrilateral and BD is a diagonal. EADF is a straight line, $\angle \mathrm{CDF}=68^{\circ}, \angle \mathrm{BDC}=45^{\circ}$ and $\angle \mathrm{BAE}=98^{\circ}$.

Calculate the size of:
a) $\angle \mathrm{ABD}$.
b) $\angle \mathrm{CBD}$
12. The figure below shows a circle centre O . AB and PQ are chords intersecting externally at a point $C . A B=9 \mathrm{~cm}, P Q=5 \mathrm{~cm}$ and $\mathrm{QC}=4 \mathrm{~cm}$. Find the value of \mathbf{x}

13. The chords AB and PQ intersects internally at O . Given that the length of $\mathrm{OP}=8 \mathrm{~cm}$, $\mathrm{OA}=4.5 \mathrm{~cm}$ and $\mathrm{OQ}=6 \mathrm{~cm}$. Calculate the length of OB

14. In the figure below ABC is a tangent to the circle at B . given that $\angle \mathrm{ABG}=40^{\circ}$, $\angle \mathrm{BGD}=45^{\circ}$, and $\angle \mathrm{DBE}=25^{\circ}$ as shown below.

Find the sizes of the following angles giving reasons in each case:
a) $\angle \mathrm{BDG}$
b) $\angle \mathrm{DGE}$
c) $\angle \mathrm{EFG}$
d) $\angle \mathrm{CBD}$
e) $\angle B C D$
15. The figure below shows two intersecting circles radii 8 cm and 6 cm respectively.

The common chord $\mathrm{AB}=9 \mathrm{~cm}$ ad \mathbf{P} and \mathbf{Q} are the centres as shown:

(a) Calculate the size of angles:-
(i) $\angle \mathrm{APB}$
(ii) $\angle \mathrm{AQB}$
(b) Calculate the area of the shaded region
16. The figure O and P are centres of two intersecting circles. ABE is tangent to circle BCD at B angle $B C D$ is 42°
(a) Giving reasons for your answer, find:-

(i) CBD
(ii) DOB
(iii) DAB
(iv) CDA
b) Show that $\triangle \mathrm{ADB}$ is isosceles
17.

In the figure above $\mathrm{K}, \mathrm{M} \& \mathrm{P}$ are points on a straight line. PN is a tangent of the circle centre O . Angle $\mathrm{KOL}=130^{\circ}$ and angle $\mathrm{MKN}=40^{\circ}$. Find, giving reasons, the values of angles.
(i) $\quad \angle \mathrm{MLN}$
(ii) $\angle \mathrm{OLN}$
(iii) $\angle \mathrm{LNP}$
(iv) $\angle \mathrm{MPN}$
(v) $\angle \mathrm{LMO}$
18. In the diagram below, O is the centre of the circle of radius 8 cm . BA and BC are tangents to the circle at A and C respectively. PD is the diameter and AC is a chord of length 8 cm .
Angle $\mathrm{ADC}=120^{\circ}$. ARC is an arc of the circle, Centre B and radius 4.6 cm
Calculate correct to 2 decimal places
(a) Angle ABR
(b) Area of sectors ABCR and OAPC
(c) Area of the shaded part

19. In the figure below, ATX is a tangent to the circle oint T, ABC/1s a straight line, angle $\mathrm{ABT}=100^{\circ}$, angle $\mathrm{XTD}=58^{\circ}$ and line $\mathrm{AB} \in \mathrm{BT}$ e and D lie on the circle

Find by giving reasons, the value of angle:
(a) TDC
(b) TCB
(c) TCD
(d) BTC
(e) DTC
20. In the figure below, B, D, E, F and G are on the circumference of the circle centre O. A, B and C form a tangent to the circle at point B . GD is the diameter of the circle. Given that $\mathrm{FG}=\mathrm{DE}$, reflex angle $\mathrm{GOB}=252^{\circ}$, angles $\mathrm{DBC}=36^{\circ}$ and $\mathrm{FEG}=20^{\circ}$

Giving reasons in each case find the angles:
a) GEB
b) BED
c) OBE
d) BGE
e) GFE
21. XYZ is a triangle in which $\mathrm{x}=13.4 \mathrm{~cm}, \mathrm{Z}=5 \mathrm{~cm}$ and $\angle \mathrm{XYZ}=57.7^{\circ}$. Find:
(i) Length of $X Z$
(ii) The circum radius of the triangle
22. In the figure shown below, the centers of the two circles are A and $\mathrm{B} . \mathrm{PQ}$ is a common chord to the two circles. $\mathrm{AP}=6 \mathrm{~cm}, \mathrm{BP}=4 \mathrm{~cm}$ and $\mathrm{PQ}=5 \mathrm{~cm}$

Calculate the area of the shaded region (take π as 3.142)
23. In the figure below NR is a diameter of the circle centre O . Angle $\mathrm{PNR}=750^{\circ} \angle \mathrm{NRM}=50^{\circ}$ and $\angle \mathrm{RPQ}=35^{\circ}$. MRS and PQS are straight lines.

Giving reasons for every statement you write, find the following angles
(a) $\angle \mathrm{PQR}$
(b) \angle QSR
(c) Reflex $\angle \mathrm{POR}$
(d) $\angle \mathrm{MQR}$
(e) $\angle \mathrm{PON}$
24. In the diagram below, ATX is a tangent to the circle at point T, ABC is a straight line, $\angle \mathrm{ABT}=100^{\circ}, \angle \mathrm{XTD}=58^{\circ}$ and the line $\mathrm{AB}=\mathrm{BT}$

Find giving reasons the value of :
(a) $\angle \mathrm{TDC}$
(b) $\angle \mathrm{TCB}$
(c) $\angle \mathrm{TCD}$
(d) $\angle \mathrm{BTC}$
(e) $\angle \mathrm{DTC}$

In the figure above $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm} \mathrm{DC}=5 \mathrm{~cm}$. Find the length DE .
26. The eleventh term of an AP is four times the second term. If the sum of the first seven terms of the AP is 175 , find the first term and the common difference
27. In the diagram below ABE is a tangent to a circle at B and DCE is a straight line.

If $\mathrm{ABD}=60^{\circ}, \mathrm{BOC}=80^{\circ}$ and O is the centre of the circle, find with reasons $\angle \mathrm{BEC}$

28. The circle below circumscribes a triangle ABC where $\mathrm{AB}=6.3 \mathrm{~cm}, \mathrm{BC}=5.7 \mathrm{~cm}$ and $\mathrm{AC}=4.8 \mathrm{~cm}$. Find the area of the shaded part (use $\pi=3.142$)
29.

(a) O is the centre of the circle and QOTS is a diameter. $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are points on the circumference of the circle. Angle $\mathrm{PQS}=38^{\circ}$ and angle $\mathrm{QTR}=56^{\circ}$.
Calculate the size of ;
(i) $\angle \mathrm{PRQ}$
(ii) $\angle \mathrm{RSQ}$
(b) Given that A varies directly as B and inversely as the cube of C and that;
$\mathrm{A}=12$ when $\mathrm{B}=3$ and $\mathrm{C}=2$. Find B when $\mathrm{A}=10$ and $\mathrm{C}=1.5$
(c) A quantity y is partly constant and partly varies inversely as the square of x.

The quantity $y=7$ when $x=10$ and $y=51 / 2$ when $x=20$. Find the value of y when $x=18$
30. The figure below shows two intersecting circles with centres P and Q and radius 5 cm and 6 cm respectively. AB is a common chord of length 8 cm . Calculate;
(a) the length of PQ
(b) the size of;
(i) angle APB
(ii) angle AQB
(c) the area of the shaded region
31. Triangle $A B C$ is inscribed in the circle. $A B=7.8 \mathrm{~cm}, A C 6.6 \mathrm{~cm}$ and $B C=5.9 \mathrm{~cm}$. Find:
(a) The radius of the circle correct to one decimal place
(b) The area of the shaded region
32. The figure below shows two circles centres A and B and radii 6 cm and 8 cm respectively. The circles intersect at P and Q . Angle $\mathrm{PAB}=42^{\circ}$ and angle $\mathrm{ABQ}=30^{\circ}$.

(a) Find the size of $\angle \mathrm{PAQ}$ and PBQ .
(b) Calculate, to one decimal place the area of:
(i) Sector APQ and PBQ.
(ii) Triangle APQ and PBQ.
(iii) The shaded area (take $\pi \underline{22}$)
33. The minute hand of a clock is 6.5 cm long. Calculate the distance in cm moved by its tip between 10.30 am . and $10.45 \mathrm{a} . \mathrm{m}$. to 2 dpl .

