1. Binominial expansion

1. a) Using binomial expansion, determine the first five $\frac{1}{x}$

(2mks)

- b) Use the expansion above to evaluate $(1.75)^8$ (2mks)(a) Expand and simplify the binomial expression $(2 + x)^5$ upto the term in x^3 . 2. (2mks) (b) Use your expression to estimate $(1.97)^5$ correct to 4 s.f. (2mks) (a) Expand $(1-3x)^{-1}$ (b) use your expansion to estimate the value of $(0.997)^{-1}$ Correct to 4 d.p. 3. (i) Expand $\begin{pmatrix} 5 + \underline{X} \\ 2 \end{pmatrix}$ up to the term in X^3 (ii) Use your expansion to estimate the value of $\begin{pmatrix} \underline{11} \\ 2 \end{pmatrix}^6$ correct to one decimal place 4. (a) Expand $(3 + 2x)^6$ up to the fourth term 5. (b) Use your expansion to estimate: $(3, \overline{3})^6$ 6 Two dice are thrown once and their sum noted. Find the probability that the sum is odd Find the length PR in a triangle POR having $PO = \frac{542}{2}$ cm², OR = 8.4 cm angle $OPR = 35^{\circ}$ 7. and angle PRO = 75° leaving your answer correct to deelimal places (a) Use binomial expansion to evaluate $(2+\underline{3})^5$ up to the fifth term 8. (b) By expressing 9.5 in the form (2 + 3), use the expansion in (a) above to calculate $(9.5)^5$ correct to 3 d.p Use the expansion of $(x - 0.2)^5$ to find the exact value of 9.8⁵ 9. 10. Solve for **x** in the equation; $\log (x + 24) = 2 \log 3 + \log (9 - 2x).$ Expand $\begin{pmatrix} 1 + \underline{x} \\ 12 \end{pmatrix}$ in ascending powers of \mathbf{x} upto the fourth term. Use the four terms to evaluate $\begin{bmatrix} 5/4 \end{bmatrix}$ to 4 decimal places. 11. (a) Expand and simplify the binominal expression $(1 + \frac{1}{2}x)^8$ 12. (b) Use the expansion up to the fourth term to evaluate $(1.05)^8$ to 2 decimal places
- 13. Expand $(3 + x)^4$ in ascending powers of x. Use the first three terms of the expansion to evaluate $(3.02)^4$, correct to 3 decimal places