1. Approximation of area

- 1. Find the area under the graph of $y = x^2 + x$ between x = 1 and x = 3. Using the mid ordinate rule with two trapezia. (3mks)
- 2. The table below shows some paired values of X and Y for a known curve.

Х	0.0	0.2	0.4	0.6	0.8	1.0
Y	0.0	0.4	1.6	3.6	6.4	10.0

Estimate the area under the curve for the interval O<X<1 using

- a) The mid ordinate rule with five mid ordinates. (4mks)
- b) The trapezium rule with five Trapezia. (2mks)
- c) If the exact area is ${}^{10}/_3$ square units. Calculate the percentage error in the two estimates. (4mks)
- 3. Use trapezoidal rule to estimate the area bounded by the curve $y = 8 + 2x x^2$ for $-1 \le x \le 3$ using 5 ordinates
- 4. (a) Using trapezoidal rule, estimate the area under the curve $y = \frac{1}{2}x^2 2$ between x = 2 and x = 8 and x-axis. Use six strips
 - (b) (i) Use integration to evaluate the exact area under the curve
 - (ii) Find the percentage error in calculating the area using trapezoidal rule
- 5. (a) Using trapezoidal rule, estimate the area under the curve $y = \frac{1}{2}x^2 2$ between x = 2 and x = 8 and x-axis. Use six strips
 - (b) (i) Use integration to evaluate the exact area under the curve
 - (ii) Find the percentage error in calculating the area using trapezoidal rule

6. The figure below shows the graphs of y = 2x + 3 and $y = -2x^2 + 3x + 4$

- (a) determine the co-ordinates of Q, the intersection of the two graphs(b) Find the exact area of the shaded region
 - 5. The table below shows some values of the function; $y = x^2 + 2x 3$ for $-6 \le x \le -3$

<u>v</u> 21 1856 1406 1006 825 5 225			15 5.5 5.25 5
y 21 18.50 14.00 10.00 8.25 5 2.25	21	14.06 10.06 8.25 5	2.25 1.06 0

(a) complete the table

- (b) using the completed table and the mid-ordinate rule with six ordinates, estimate the area of the region bounded by the curve; $y = x^2 + 2x 3$ and the lines y = 0, x = -6 and x = -3
- (c) (i) by integration find the actual are of the region in (b) above(ii) Calculate the percentage error arising from the estimate in (b)
- 7. Complete the table below for $y = 5x^2 2x + 2$. Estimate the area bounded by the curve, the x axis, the lines x = 2 and x = 7 using the trapezoidal rule with strips of unit length.

Х	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
у	18			56.25	74		117			200.25	