1. Angle Properties of Circles

1. In the figure below $P Q R$ and S are points on the circumference of a circle centre O. The point TSO and Q lie on a straight line MPT is a tangent to the circle at P .

Find the values of the following angles stating reasons in each case.
(a) $\angle \mathrm{SRP}$
(b) $\angle \mathrm{ORP}$
(c) $\angle \mathrm{RPT}$
(d) $\angle \mathrm{STP}$
(2mks)
(2mks)
(2mks)
(2mks)
(2mks)
2. In the figure below, TA is a tangent to the circle ABCD with centre $\mathrm{O} . \angle \mathrm{TAD}=48^{\circ}$ and $\angle \mathrm{BOD}=116^{\circ}$

Giving reasons calculate:
a) $\angle \mathrm{ACD}$
b) $\angle \mathrm{ABO}$
c) $\angle \mathrm{ADO}$
d) $\angle \mathrm{ACB}$
e) \angle ATB
3. In the figure below $\mathrm{AB}=8 \mathrm{~cm}$ and O is the centre of the circle. Determine the area of the circle if $\angle \mathrm{OAB}=15^{\circ}$

4.

The figure above is a cyclic quadrilateral PQRS . Given that TPX is a tangent at P and O is the centre of the circle and that RQX is a straight line with $\angle \mathrm{RPQ}=50^{\circ}$ and $\angle \mathrm{PRS}=25^{\circ}$, giving reason in each case find:
(a) angle PRQ
(2mks)
(b) angle PSR
(c) angle PXQ
(d) angle TPS
(e) angle POS
5. In the figure below ABCD is a circle with centre $\mathrm{O} . \mathrm{AB}$ and DC meet at a point E outside the circle. $\mathrm{DC}=\mathrm{BC}$ and $\angle B C E=48^{\circ}$

Find the angles
a) BAD
b) BDC
c) BEC
6. In the figure O and P are centres of intersecting circles $A B D$ and $D B C$ respectively. Line $A B E$ is a tangent to circle $B C D$ at B and angle $B C D=42^{\circ}$.

Giving reasons determine the size of:
(a) Angle CBD.
(b) Angle ODB.
(c) Angle BAD.
(d) Angle ABD
(e) Angle ODA.
7. In the figure below, O is the centre of the circle. Express the angle W in terms of angles p and q.

8. Two circles of radii 4 cm and 6 cm intersect as shown below. If angle $\mathrm{XBY}=30^{\circ}$ and angle $\mathrm{XAY}=97.2^{\circ}$.

Find the area of the shaded part.
(Take $=\pi \frac{22}{7}$)

9. In the diagram, O is the centre of the circle and AD is parallel to BC . If angle $\mathrm{ACB}=50^{\circ}$ and angle $\mathrm{ACD}=20^{\circ}$.

Calculate; (i) $\angle \mathrm{OAB}$
(ii) $\angle \mathrm{ADC}$
10. Two intersecting circles have centres S and R. Given that their two radii are 28 cm and 35 cm , their common chord $\mathrm{AB}=38 \mathrm{~cm}$ and angles $\mathrm{ASB}=85.46^{\circ}$ and $\mathrm{ARB}=65.76^{\circ}$,

Calculate the shaded area
11. In the figure below $A B C D$ is a cyclic quadrilateral in which $A D=D C$ and $A B$ is parallel to CD. Given that angle $\mathrm{ABC}=80^{\circ}$, Find the size of:

a) $\angle \mathrm{DAC}$
b) $\angle \mathrm{BAC}$
c) $\angle \mathrm{BCD}$
12. Line $\mathrm{QR}=6.5 \mathrm{~cm}$ is given below:-(Do not use a protractor for this question)
(a) Draw triangle PQR such that \mathbf{p} lies above line $\mathrm{QR}, \angle \mathrm{PQR}=30^{\circ}$ and $\mathrm{PQ}=7 \mathrm{~cm}$

(b) By accurate construction on the diagram above, show the locus of a point which lies within the triangle such that:-
(i) T is more than 2.5 cm from line PQ and
(ii) T is not more than 4.5 cm from Q

Shade the region in which \mathbf{T} lies
(c) Lines QP and QR are produced to K and M respectively
(i) Show by construction on the diagram above, the locus of a point C which is equidistant from each of the lines PK, PR and RM
(ii) With centre C and an appropriate radius, draw a circle to touch each of the lines PK, PR and RM only once
Measure the radius

What name is given to the circle drawn in (c) (ii) with respect to triangle QPR
13. The figure below shows a circle centre \mathbf{O} and a cyclic quadrilateral $\mathrm{ABCD} . \mathrm{AC}=\mathrm{CD}$, angle ACD is 80° and BOD is a straight line. Giving reasons for your answer, find the size of :-
(i) Angle ACB
(ii) Angle AOD

(iii) Angle CAB
(iv) Angle ABC
(v) Angle AXB
14. The figure below shows two circles of equal radius of 9 cm with centres A and B .

Angle CAD $=80^{\circ}$

a) Calculate the area of:-
i) The sector CAD.
ii) The triangle CAD.
iii) The shaded region.
15. In the diagram below, $\angle \mathrm{QOT}$ is a diameter. $\angle \mathrm{QTP}=48^{\circ}, \angle \mathrm{TQR}=46^{\circ}$ and $\angle \mathrm{SRT}=37^{\circ}$

Calculate, giving reasons in each case:-
(a) $\angle \mathrm{RST}$
(b) \angle SUT
(c) $\angle \mathrm{ROT}$
(d) $\angle \mathrm{PST}$
(e) Reflex \angle SOP
16. The diagram below shows a circle with a chord $\mathrm{PQ}=3.4 \mathrm{~cm}$ and angle $\mathrm{PRQ}=40^{\circ}$. Calculate the area of the shaded segment.

17. The figure below shows circle ABCD . The line EDF is a tangent to the circle at D .

Find the values of the following angles, stating your reasons in each case
(a) $\angle \mathrm{ABC}$
(b) $\angle \mathrm{BCD}$
(c) $\angle \mathrm{DCE}$
(d) $\angle \mathrm{ACD}$
18. In the figure below BD is the diameter of the circle and O is the centre.

(a) $\angle \mathrm{ADC}$
(b) \angle AEB

