


1	A	√1
-	It has stronger magnetic field than B	√1
2.	(i) Magnetic material	√ 1
tes	(ii) – using larger current	√1
n ou	- Increasing the no of turns	√ 1
6	- Using more loader arms	Any two
3.	Trees absorb sound	√1
4.		
CP CP		
e a	380	
ps:		
#		
E	$90 - 38 = 52^0$	
5.	70Ah 60Ah	
J. <u>S</u>	- Plates with large surface – smaller surface area plates	
i.i.e	- Many plates hence bigger – A few plates hence look smaller	
6.	E = IR + Ir	
B	$1.5v = 0.5 \times 2.7 + 0.5r$	
	1.5 - 1.35 = 0.5r	
£	$r = 0.3\Omega$	
7.	$\lambda = 30/3 = 10$ m	✓ -
tt		Formular
p	$f = v/\lambda = 20/10 = 2m/s$	√
ä		Substituti
his		on
9		✓Answer
8.	- Biconvex lense	√ 1
WID	- Because the grandfather is having long sightedness eye defect	√1
9.	- Leaf divergence increases	✓ Correct
	- Like charges repel	Observati
		on
		✓ Reason
		No mark
		if the observati
		on is
		wrong
10.	- Increase the area of overlap of the plates	√mark
(a)	- Decrease the distance between plates	✓ mark
10.	Total capacitance in parallel = $2 + 3 = 5 \mu F$	
(b)	Effective capacitance = $C_T = (5 \times 1.5) / (5 + 1.5) = 1.154 \mu$	✓ mark
	Total Charge stored $Q_T = C_T V = 10 \times 1.154 = 15.54 \mu F$	for CT
	Charge stored by 1.5 μ F Capacitor = total charge = 15.54 μ F	√mark for QT
	Change stored by 1.5 m 1 Capacitor - total charge - 15.57 m 1	for Q1 ✓ mark
	SECTION B	, mark
11.	(a) (i) The ratio of the sine of angle of incidence to the sine of angle of refraction is a constant for a pair	√ 1
***	of media	1
	(ii) – Do not absorb light energy like mirrors	
	- Not affected by thickness as mirrors	
	- Do not wear off like the peeling of silvering on mirror.	
	- Do not wear off like the peeling of silvering on mirror.	

	(b) (i) $k_n w = k_n a_n w$ = 1 x 1.33 = 0.9236	Teacher.c
	$\frac{1.44}{1.44}$	
	(ii) $i = 70^0$	
	<u>Sini</u> = 0.9236 Sinr	
	Sin $r = \sin 70^{\circ} = 1.0174$	
	0.9236	
	r is greater than 90° hence the light reflection	
SS		
not	s	
[-	(iii) The different colours travel at different velocities hence would have different angles of refraction	
20.1	and are dispersed	
er.	(iv) The eye would see a spectrum since the light rays are dispersed in the kerosene layer and are	
12.	internally reflected at the kerosene – water surface the eye would see a spectrum at the surface (a) Current flowing through a conductor is directly proportional to the potential difference across it	√ 1
12.	provided the temperature and other physical conditions are kept constant	, 1
\.:S	(b) (i) emf of the battery equal to v intercept 9.2V lmk	
ittp	(ii) internal resistance = gradient of the graph . gradient	√ 1
m b		✓2
fro	$r = 2.5 3 \Omega$ 3mks	
als	(b) (i) The work done in driving charges through the coil is high due to its resistance. This energy is	
eri	converted into heat in the coil (ii) $V = IR$ $R = \underline{V} \checkmark$ $= \underline{12V} \checkmark$	√1 √1
nat	$\frac{1}{I} = \frac{12V}{2.4}$	√1 √1
H	$=5.0\Omega$	√1
FRI	(iii) H = VIt	√1
ler	$H = 12 \times 2.4 \times 60$ = 1728J	
oth	(iv) – Using a source with higher emf	
pun	- Reducing the length of the coil	
uis a	$= P = \frac{V^2}{R}$	
13.a)	i) In transverse wave, the vibration of particles is perpendicular to the direction of	
0	travel of the wave but in longitudinal the vibration is parallel to the direction of the	
MT	wave travel√1	
Do	ii) -Sound wave requires medium for transgression but e.m waves does not	
	require medium.√1	
	-Sound wave is longitudinal and e.m wave is transverse. ✓ 1	
	i) $V = \frac{2d}{c} \checkmark 1 = \frac{(2 \times 400)m}{2.5s} \checkmark 1$	
b)	c 2.5 s	
	$=320 \text{/s} \checkmark 1$	
	ii) $320 = 2 \frac{2(x400)}{4.5} \checkmark 1$	
	$\frac{11}{4.5}$	
	1280 = 2x - 800	
	2080 = 2x	
	1040 = x	
	$\therefore x = 1040 \checkmark 1m$	
c)	i) Produce coherent sources of light√1	
	ii) Alternating <u>dark and bright</u> fringes 1 are observed on the screen on	
	both sides of the central brighter fringe 1	
	iii) i) Dark and bright fringes get closer√1	
	ii) A full spectrum is observed√1	
		j

(Any one)

-Winding the coil on a soft iron core. $\checkmark 1$